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Introduction
The western honey bee (Apis mellifera) plays a central 
role in sustaining pollination networks that underpin 
the functioning of natural ecosystems, while also 
serving as an indispensable component of global 
agricultural production systems. Pollination services 
directly influence approximately 75% of flowering plant 
species and contribute to around 35% of global food 
production, thereby supporting both biodiversity and 
food security worldwide [1]. However, in recent decades, 
various stressors-including climate change, pesticide use 
in agriculture, and habitat fragmentation-have led to 
significant declines in local honey bee populations. These 
threats pose serious risks not only at ecological but also 
economic and genetic levels, challenging the long-term 
sustainability of apiculture and pollination services [2,3]. 

In this context, accurate identification and monitoring of 
local genetic lineages are crucial for understanding intra-
species adaptation dynamics and for developing strategic 
conservation efforts to safeguard native populations. 
Traditional morphometric analyses have long been 
employed as the primary approach for identifying 
subspecies and geographic variants of honey bees. Among 
these, forewing venation patterns have historically served 
as key morphological indicators for differentiating 
populations [4]. Nevertheless, this method is increasingly 
inadequate for modern biometric applications due to its 
dependency on expert interpretation, labor-intensive and 
time-consuming processes, and limited scalability for large 
datasets. Furthermore, the reliance on visual assessments 
introduces subjectivity, which in turn compromises the 
reproducibility and standardization of results [5].  

In recent years, rapid advancements in artificial intelligence 
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Abstract

Accurate identification of Apis mellifera populations is essential for conserving 
biodiversity, optimizing breeding programs, and understanding environmental 
adaptation processes. Traditional morphometric approaches, while informative, face 
significant limitations due to their labor-intensive nature and inefficiency when applied 
to large-scale datasets. To address these challenges, this study applies a comparative 
evaluation of Convolutional Neural Network (CNN) models for country-level 
classification of honey bee populations using forewing images. A total of 2.500 high-
resolution forewing images-500 from each of Croatia, Poland, Romania, Spain, and 
Greece-were selected to represent diverse geographical regions. Following biologically 
appropriate preprocessing and data augmentation, the images were analyzed through 
a comparative evaluation of three pre-trained CNN models - VGG16, InceptionV3, 
and ResNet50. All models were fine-tuned through transfer learning, and classification 
performance was systematically assessed using accuracy, precision, recall, and F1-
score metrics. Among the evaluated models, VGG16 achieved the highest classification 
accuracy at 95%, outperforming InceptionV3 and ResNet50. These results highlight not 
only the high predictive power of CNN models in morphologically distinguishing honey 
bee populations, but also demonstrate the relative strengths of different CNN models. 
Furthermore, the study underscores the advantages of automated CNN-based workflows 
over manual morphometric methods in terms of speed, objectivity, and scalability. By 
integrating CNN models into morphometric analysis, this research provides robust and 
reproducible tools for apicultural studies, population-level biodiversity monitoring, and 
applied breeding strategies.
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and computer vision have enabled the fast, objective, and 
high-throughput analysis of morphological data. These 
developments form the foundation for automated systems 
that increasingly complement human expertise in image-
based classification tasks. Convolutional Neural Networks 
(CNNs) have emerged as powerful and flexible models 
that overcome the limitations of traditional morphometric 
approaches, owing to their data-driven learning strategies 
and multi-layered architectures [6]. CNNs are implemented 
through diverse architectures that emphasize different 
strategies for feature extraction and network depth. 
Prominent examples used in transfer learning include 
VGG16, which emphasizes a simple yet deep layer 
organization; ResNet50, which introduced residual 
connections to allow the training of very deep networks 
without degradation problems; and InceptionV3, which 
incorporates multi-scale convolutional filters for efficient 
feature extraction [7]. A key strength of CNNs lies in their 
ability to autonomously learn both local and global patterns 
embedded in image data, eliminating the need for manual 
feature engineering. Particularly in symmetrical structures 
such as wing morphology, CNNs effectively capture subtle 
variations-even those imperceptible to the human eye-that 
carry taxonomic significance, thus demonstrating high 
discriminative power in complex morphological pattern 
recognition tasks [8-10]. These capabilities not only enhance 
classification performance but also meet core requirements 
of modern biometric analysis, such as reproducibility, 
scalability, and adaptability. Consequently, CNN-based 
systems signify a paradigm shift in morphometric 
evaluation, paving the way for more comprehensive and 
objective strategies with the potential to progressively 
replace traditional methods [11].

Various CNN-based approaches have been proposed in 
the literature for the classification of honey bee subspecies. 
For example, De Nart et al.[12] compared different CNN 
models using 9.887 wing images from seven subspecies and 
reported that ResNet50 achieved an accuracy above 94%. 
Similarly, the DeepWings© system developed by Rodrigues 
et al.[13] employed a hybrid CNN–SVM framework on 
images from 26 subspecies and achieved an average 
accuracy of 86.6%. Oleksa et al.[14] on the other hand, made 
a significant contribution to addressing the issue of data 
sharing in this field by providing a large-scale open-access 
dataset comprising 26.481 honey bee wing images collected 
from different regions across Europe. However, this open-
access dataset has so far been utilized mainly for classical 
morphometric or statistical analyses, and applications 
of multi-class CNN-based classification remain absent. 
More broadly, most existing studies have concentrated 
on subspecies-level identification, leaving the automated 
classification of geographic population variation largely 
underexplored.

In this study, a total of 2.500 forewing images of honey bees 

from Croatia, Poland, Romania, Spain, and Greece were 
used to achieve automated morphological classification of 
populations at the country level. To this end, three different 
CNN architectures-VGG16, InceptionV3, and ResNet50-
were implemented through transfer learning, and the 
classification performance of each model was evaluated 
based on metrics such as accuracy, precision, recall, and F1-
score. The study aims to fill a critical gap in the literature 
by focusing on geographic population-level classification, 
which has received limited attention, and by providing 
a comparative performance analysis of CNN-based 
models. This approach offers the potential to overcome 
the limitations of traditional morphometric methods by 
enabling faster, more objective, and scalable classification 
processes.

Material and Methods
Ethical Statement

This study did not involve any procedures requiring 
ethical approval.

Material

In this study, a total of 2.500 forewing images of worker 
honey bees (Apis mellifera) from various regions of Europe 
were used. The images were obtained from a public 
domain dataset published by Oleksa et al. and hosted on 
the Zenodo platform [14]. The original dataset contains 
26.481 forewing images collected from 13 European 
countries; however, for the purposes of this study, only the 
data from five countries-Croatia, Poland, Romania, Spain, 
and Greece-with sufficient sample sizes were included in 
the analysis (Fig. 1).

Fig 1. Locations from which honey bee samples were collected
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For each country, a balanced subset consisting of 500 
wing images was created by applying a stratified random 
sampling procedure across multiple geographic locations 
included in the dataset. This approach ensured that each 
country class was equally represented while partially 
reflecting its internal geographic variation. The images 
were obtained by mounting the wings of worker bees 
between microscopic slides and capturing them digitally 
under controlled optical conditions. All images were in 
high-resolution. PNG format and were used directly for 
analysis without any manual annotation or segmentation 
procedures (Fig. 2). The image files followed a naming 
convention beginning with ISO 3166-1 alpha-2 country 
codes (e.g., GR-0001-wing01.png) and were organized 
into separate. ZIP archives for each country.

Preprocessing

A total of 2.500 wing images in .PNG format were subjected 
to preprocessing to standardize their dimensions prior to 
analysis. All images were resized to an input resolution 
of 224 × 224 pixels and converted into three-channel 
tensors in RGB format. Pixel values were normalized 
from the original 0-255 range to a 0-1 scale. No manual 
segmentation, background removal, or landmark 
annotation was applied; the images were analyzed in their 
raw form.

Data Augmentation

To address the limited number of samples in the dataset 
and to better capture intra-country morphological 
variation, data augmentation techniques were applied. 
This process aimed to reduce the risk of overfitting during 
model training and to enhance the model’s ability to 
recognize generalizable morphological patterns.

From each original wing image, synthetic variations were 
generated using the following transformations:

- Random horizontal flipping

- Random rotation up to ±15°

- Random width and height shifts of up to ±10%

- Random zooming within a ±10% range

- Minor pixel brightness variations (brightness range: 0.8-
1.2)

These transformations were implemented in real time (on-
the-fly) on the training data using the ImageDataGenerator 
class from the Keras library. Data augmentation was 
applied only to the training set; the validation and test sets 
were evaluated in their raw, unaltered forms.

CNN Architectures

In this study, three widely used Convolutional Neural 
Network (CNN) architectures were evaluated for 
the classification of honey bee wing images: VGG16, 
ResNet50, and InceptionV3. These models represent 
different design principles: VGG16 with its simple but 
deep layer organization is a common reference in transfer 
learning; ResNet50 introduces residual connections 
that allow the training of very deep networks without 
degradation problems; and InceptionV3 employs multi-
scale convolutional filters within its modules, enabling 
efficient extraction of diverse features from complex 
images [7]. All architectures were implemented through 
transfer learning using pre-trained ImageNet weights. 
During training, the initial layers were frozen and only the 
final layers were fine-tuned for task-specific adaptation.

The input dimensions were standardized to 224 × 224 
× 3 across all models. The original classification layers 
were replaced with a fully connected dense layer of five 
neurons, each representing one country class, with 
softmax activation applied to generate probabilities for 
class membership.

For training, the Adam optimization algorithm was 
employed with a learning rate of 0.0001. Each architecture 
was trained independently, and classification performance 
was evaluated separately to ensure fair comparison.

Model Training

The dataset was divided into 80% training and 20% 
test sets, with 10% of the training data reserved for 
validation. Stratified sampling was applied to preserve 
class distribution across subsets. All CNN models were 
trained independently for a maximum of 50 epochs with 
a batch size of 32. To prevent overfitting, early stopping 
was applied, terminating training if validation loss (val_
loss) did not improve for five consecutive epochs. The 
Adam optimizer was used with a learning rate of 0.0001, 
and categorical cross-entropy was selected as the loss 
function due to the multi-class classification task and 
its compatibility with the softmax activation function. 
The ModelCheckpoint callback was employed to save 
the weights corresponding to the epoch with the best 
validation performance. 

Fig 2. Example of a honey bee forewing with the image quality used in 
the analyses
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All analyses were conducted in Python on the Google 
Colab platform. Models were implemented with 
TensorFlow 2.11 and Keras, supported by NumPy, Scikit-
learn, Matplotlib, and Seaborn libraries, and training was 
performed on an NVIDIA Tesla T4 GPU-enabled system.

Evaluation Metrics

To evaluate the classification performance of the  
models, several metrics were computed on the test  
dataset. These included accuracy, precision, recall, and 
F1-score. To provide a comprehensive assessment of 
each model’s ability to correctly identify all classes, these 
metrics were reported both per class and as macro-
averaged scores (Fig. 3).

In addition, confusion matrices and Receiver Operating 
Characteristic (ROC) curves were visualized for each 
model. Class-wise recall and specificity levels were analyzed 
in detail. The confusion matrices were used to identify 
which classes were most frequently misclassified with one 
another, while the ROC curves and the corresponding 
Area Under the Curve (AUC) values reflected the overall 
discriminative power of the models.

PCA-Based Morphological Distribution Analysis

In addition to the classification performance achieved by 
the deep learning models, Principal Component Analysis 
(PCA) was performed to further explore inter-individual 
morphological patterns. For this analysis, shape features 
derived from each wing image were computed using Hu 
moments. Hu moments consist of seven statistical values 
that are invariant to geometric transformations such as 

rotation, scaling, and translation, and are commonly 
used to describe object shapes in a stable manner. Each 
individual was represented as a seven-dimensional feature 
vector based on the computed Hu moments, and these 
vectors were subsequently reduced to two dimensions 
using the PCA algorithm. The resulting PCA plots visually 
illustrated morphometric similarities and differences 
among individuals and allowed for the analysis of class-
level overlaps.

Results
The classification performance of the three Convolutional 
Neural Network (CNN) architectures is summarized 
in Table 1. Among them, VGG16 achieved the highest 
accuracy at 95%, with precision, recall, and F1-score 
values of 0.95, reflecting balanced and consistent 
recognition across all classes. InceptionV3 followed with 
93% accuracy and comparable precision–recall metrics 
(≈0.93). ResNet50 showed the lowest overall accuracy 
(90%) but maintained a relatively high precision (0.93), 
suggesting a more conservative classification approach 
that may have reduced false positives.

As shown in Fig. 4-A,B,C, the confusion matrices provide 
a comparative overview of class-wise discrimination. 
VGG16 reached 100% accuracy for Spain (ES) and Greece 
(GR), with precision and recall values of 1.00, likely due to 
distinctive morphological traits in these populations. In 
contrast, classification errors occurred in Croatia (HR), 
where 14 samples were misclassified as Poland (PL) (recall 
= 0.86), and in PL, where four samples were assigned to 
HR (recall = 0.96). Romania (RO) showed moderate 
confusion with seven misclassifications into HR and PL. 
For ResNet50 (Fig. 4-B), ES, GR, and RO were perfectly 
classified, but minor errors occurred in HR (recall = 0.97). 
The greatest difficulty was observed in PL: only 55 of 100 
samples were correctly identified, with 45 misclassified 
as HR, leading to sharp declines in both precision and 
recall. The InceptionV3 model (Fig. 4-C) also achieved 
100% accuracy for ES and GR. However, HR showed 
weaker performance, with 23 samples classified as PL and 
one as RO (recall = 0.76). Precision in PL was reduced by 
nine misclassifications from HR, while recall remained 
relatively high (91/100 correctly classified). For RO, only 
two misclassifications into HR were observed, and the 
overall recognition was strong.

Fig 3. Workflow pipeline used for wing image classification using VGG16, 
ResNet50, and InceptionV3 architectures

Table 1. Average classification performance metrics by model

Model Accuracy Precision Recall F1-Score Support

VGG16 0.95 0.95 0.95 0.95 500

ResNet50 0.90 0.93 0.90 0.90 500

InceptionV3 0.93 0.93 0.93 0.93 500
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Receiver Operating Characteristic (ROC) curves for the 
three CNN architectures (Fig. 5-A,B,C) demonstrated 
consistently high inter-class discriminative performance. 
For Spain (ES), Greece (GR), and Romania (RO), all 
models achieved an Area Under the Curve (AUC) value of 
1.00, confirming perfect separation without classification 
errors. This finding highlights the distinctiveness of 
the wing patterns in these populations and the strong 
ability of CNNs to capture such features. By contrast, 
slight reductions in AUC values were observed for 
Croatia (HR) and Poland (PL), with VGG16 achieving 
the highest scores (0.99), followed by ResNet50 (0.98) 
and InceptionV3 (0.97). These differences indicate that 
morphological similarities between HR and PL created 
a greater challenge for accurate separation. The ROC 
curve slopes further suggest that InceptionV3 performed 
comparatively weaker for these classes. Overall, ROC 
analysis confirmed VGG16 as the most consistent model, 
ResNet50 as balanced, and InceptionV3 as relatively 
limited in discriminative ability for certain populations. 

In addition to the classification analyses, a Principal 
Component Analysis (PCA) was performed using shape 
features derived from Hu moments to further explore 

morphological similarities and differences among the 
samples. The first two principal components together 
explained 80.09% of the total variance, indicating that most 
of the morphological variation was effectively captured. 

Fig 6. Two-dimensional PCA plot illustrating the morphological variation 
of honey bee wing images from five different populations. Each point 
represents a single individual, and colors indicate country-specific 
groupings (ES, GR, RO, PL, HR). The first two principal components 
collectively explain 80.09% of the total variance

Fig 4. Confusion matrices illustrating the classification performance of different CNN models. (A) VGG16, (B) ResNet50, and (C) InceptionV3. Each 
matrix displays the actual versus predicted class distributions, highlighting the ability of each model to distinguish among honey bee wing images from 
different populations

Fig 5. ROC curves demonstrating the classification performance of the CNN models. (A) VGG16, (B) ResNet50, and (C) InceptionV3. The curves 
illustrate the trade-off between true positive and false positive rates across different classification thresholds. AUC values are reported to quantify the 
overall discriminative ability of each model
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As shown in Fig. 6, the five country groups generally 
formed distinct clusters; however, a marked overlap was 
observed between Croatia (HR) and Poland (PL). This 
overlap was also reflected in the CNN misclassification 
patterns, where up to 45% of PL samples were assigned to 
HR by ResNet50.

Discussion
The findings of this study demonstrated that CNN-
based models can classify honey bee populations with 
high overall accuracy, particularly when using wing 
image data. Among the evaluated architectures, VGG16 
consistently outperformed ResNet50 and InceptionV3 
across accuracy, precision, recall, and F1-score metrics, 
indicating its robustness and balance in handling class 
distinctions. These results align with previous studies, 
such as De Nart et al.[12], which demonstrated the 
applicability of CNN-based classification to honey bee 
wing images, supporting the notion that such models 
offer higher-resolution discrimination than traditional 
morphometric approaches. Taken together, these findings 
indicate that while all models produced highly accurate 
results for certain classes, classification performance 
declined notably due to recurring misclassifications 
between the HR and PL classes. The consistent confusion 
between Croatia (HR) and Poland (PL) may be rooted 
not only in algorithmic limitations but also in biological 
similarity. According to Mahalanobis distance values 
reported by Oleksa et al.[14], the distance between the HR 
and PL populations was calculated as 3.91-the smallest 
among the five countries analyzed in this study. Thus, 
it can be inferred that these classification errors reflect 
not only model-specific weaknesses but also genuine 
morphometric proximity, which naturally influences the 
learning process of the models. 

Previous studies have employed a variety of CNN 
architectures for classifying bee wing images, thereby 
providing useful comparative benchmarks. De Nart et 
al.[12] evaluated ResNet50, MobileNetV2, InceptionV3, 
and Inception-ResNetV2 architectures on approximately 
9,887 honey bee wing images and reported accuracies 
exceeding 92%, with Inception-based models achieving 
the strongest performance in many classes. Similarly, 
Spiesman et al.[15] demonstrated that convolutional neural 
networks, specifically EfficientNetV2L, can achieve high 
accuracy (up to 98.1%) when classifying challenging 
bee taxa using forewing images, reinforcing the value of 
morphological image-based approaches for species-level 
identification. In a broader insect context, Sauer et al.[16] 
developed a CNN for distinguishing mosquito species 
based solely on wing images and achieved a macro-F1 
score of about 0.90 using RGB images, demonstrating 
that even highly similar wing venation patterns can be 

reliably differentiated with well-trained architectures. In 
the present study, VGG16 delivered the best performance. 
This outcome may be attributed to the model’s balance 
between complexity and regularization, which allowed 
it to generalize effectively on a limited dataset without 
overfitting. ResNet50, while robust for deep feature 
learning due to its residual connections, tended to 
perform more conservatively in morphologically similar 
classes, leading to reduced recall. InceptionV3, although 
designed to capture multi-scale features, was less effective 
than VGG16 in separating the HR-PL populations. 
Collectively, these findings suggest that in contexts where 
repetitive and fine-scale morphological traits dominate-
such as forewing venation-simpler architectures may offer 
an optimal trade-off between capacity and generalization. 
The observed performance differences support the view 
that architecture choice should be carefully aligned with 
the morphological complexity of the problem under 
investigation.

Beyond the performance comparisons, another important 
distinction is methodological. Unlike landmark-based 
approaches such as DeepWings© software developed by 
Rodrigues et al.[13] and Garcia et al.[17] or similar systems 
that rely on predefined vein coordinates, our method 
did not require any manual extraction of morphometric 
landmarks. Instead, the CNN models directly processed 
raw wing images, learning discriminative features in a 
data-driven manner. This represents a methodological 
shift in wing morphometrics, as it removes observer-
dependent steps and allows the models to capture subtle 
and potentially more informative morphological patterns 
that may be overlooked in landmark-based analyses. Such 
an approach enhances objectivity, reduces preprocessing 
effort, and expands the scalability of morphometric 
studies to large datasets.

The applications of artificial intelligence in apiculture 
extend far beyond classification. For example, DeepBee© 
achieved over 98% accuracy in detecting eggs, larvae, 
and honey, outperforming traditional observation [18]. 
Other approaches, such as those of Voudiotis et al.[19], 
integrated cameras with deep learning to identify Varroa-
infested bees with 86% accuracy. Deep learning has also 
been applied to more complex biological features: Lösel 
et al.[20] distinguished brain structures of bees and wasps 
using micro-CT and CNNs. In addition, Kongsilp et al.[21] 
combined Mask R-CNN with Kalman filtering to track 
waggle dances within hives. Collectively, these studies 
highlight the versatility of deep learning in tackling 
diverse apicultural challenges, ranging from colony health 
monitoring to behavioral analysis.

This study demonstrated that CNN-based models can 
classify honey bee populations with high accuracy based 
on wing morphology, with the VGG16 architecture 
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exhibiting particularly balanced and reliable performance. 
The recurrent overlaps observed between morphologically 
similar populations, such as HR and PL, reflect not only 
model-related challenges but also genuine biological 
proximities. Beyond these results, the present work 
introduces a distinctive contribution by demonstrating 
that accurate classification can be achieved without 
manual landmark extraction, relying instead on fully 
automated, data-driven feature learning from raw wing 
images. This methodological simplification enhances 
objectivity and scalability, making the approach more 
suitable for large-scale morphometric applications. Future 
research may further improve class-level discrimination 
and generalization capacity by incorporating more 
diverse datasets and advanced modeling strategies, but the 
present findings already establish CNN-based workflows 
as a robust and innovative framework for population-level 
analyses in apicultural research.
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