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Introduction
Livestock production is vital for global food security 
and demands ongoing research to boost productivity. 
Effective herd management enhances animal welfare, 
health, and profitability, which are key to sustainable 
milk production [1,2]. Machine learning (ML), a branch of 
artificial intelligence (AI), offers advanced tools to detect 
complex patterns, select relevant variables, and generate 
accurate predictions in this context [3]. ML and AI are 
widely used in fields such as veterinary science, enabling 
improved decision-making through big data and IoT 
technologies [4-6]. Recent advances have accelerated AI 
applications in livestock, including disease detection and 
biometric animal monitoring, enhancing real-time herd 
management [4,7-12].

Many studies apply ML to predict milk yield, but results 
often lack reliability under real farm conditions due to 
milk yield’s multifactorial complexity [13,14]. Traditional 
accuracy metrics can mislead in imbalanced datasets; 
therefore, weighted F1-score and ROC-AUC are preferred 
for performance evaluation [15]. ML has shown promise in 
disease detection, reproductive performance prediction, 
and resource optimization in dairy farming [16-20].

This study evaluated nine ML algorithms to classify 
Holstein cows’ lactation milk yield using a dataset of 
128 records with five features. Dimensionality reduction 
via PCA and LDA was applied. Models were assessed 
using 10-fold cross-validation and 50 bootstrap samples, 
focusing on weighted F1-score and ROC-AUC due to 
class imbalance. A hybrid ensemble model combining top 
algorithms was developed to improve prediction accuracy 
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Abstract

Machine learning (ML) algorithms are widely employed across various domains to identify 
patterns and relationships in large datasets, and to perform tasks such as prediction and 
classification. This study investigates the use of machine learning techniques to predict 
lactation milk yield in Holstein dairy cows within the field of veterinary sciences. The 
dataset comprises records from 128 cows, with lactation milk yield categorized into 
three classes low, medium, and high based on threshold values determined by expert 
opinion. The independent variables include Age (in days), Days in Milk (DIM), Service 
Period (in days), Calving Date, and Parity. To reduce the dimensionality of the dataset, 
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were 
applied. The performance of nine classification algorithms was evaluated on both the 
original and reduced datasets using 10-fold cross-validation and bootstrap resampling 
methods. Due to class imbalance in the data, the weighted F1-score was used as the 
primary performance metric instead of accuracy. Among the original models, the 
highest weighted F1-scores were achieved by Decision Tree (DT), Gradient Boosting 
Machine (GBM), and Extreme Gradient Boosting (XGBoost), with scores of 0.47, 0.53, 
and 0.51, respectively. A hybrid ensemble model developed by combining these top-
performing algorithms demonstrated superior performance, yielding a weighted F1-
score of 1.00, an accuracy of 1.00, and an ROC-AUC of 1.00. These findings suggest that 
hybrid ensemble models can provide more effective and robust solutions in veterinary 
applications and similar research fields.
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and robustness. The following sections detail the data, 
methods, results, and the enhanced performance of the 
hybrid model.

Material and Methods
Ethical Statement 

This study does not require ethical permission.

Data and Preprocessing

The study dataset comprised 128 lactation records from 
Holstein cows, each with five features: age (days), days 
in milk (DIM), service period (days), calving date, and 
parity. The target variable, total lactation milk yield 
(kg), was classified into three categories (low, medium, 
high) based on expert thresholds, forming a multi-class 
classification task. Numerical features were normalized, 
categorical data numerically encoded, and outliers were 
removed using the Local Outlier Factor (LOF) method 
[21] excluding nine samples. A robust scaler minimized 
the effect of extreme values. Descriptive statistics and 
correlation analysis were conducted to examine feature 
relationships and multicollinearity. Class imbalance was 
confirmed, necessitating weighted metrics for model 
evaluation.

Dimensionality reduction using Principal Component 
Analysis (PCA) and Linear Discriminant Analysis 
(LDA) was applied to reduce redundancy and noise: 
PCA reduced features from five to three components 
(97% variance retained), while LDA projected data onto 
two discriminant axes maximizing class separability. 
These reduced datasets were used to train classifiers, 
but as no significant performance gain was observed, 
hyperparameter tuning was conducted on models using 
the full feature set (128x5).

Machine Learning Algorithms

ML algorithms identify patterns in large datasets, enabling 
accurate predictions on unseen data [22]. Successful ML 
application depends on choosing suitable algorithms 
and evaluation metrics [23,24]. Fig.1 illustrates a typical ML 
approach.

Common ML tasks include classification and regression, 
which require different algorithms. In this study, nine 
supervised classifiers were implemented using Python 
3.9.10 and Scikit-learn libraries.

Decision Tree (DT): Tree-structured models split data by 
features and provide interpretable “if-then” rules. Pruning 
and tuning prevent overfitting [25,26].

Gradient Boosting Machine (GBM): An ensemble 
method building trees sequentially to correct prior errors; 
sensitive to hyperparameters like learning rate and tree 
depth [26].

Extreme Gradient Boosting (XGBoost): An optimized 
GBM variant with regularization and faster training, 
widely recognized for superior performance [27], which has 
demonstrated strong performance in agricultural datasets 
[28], also exhibits high tolerance to multicollinearity and 
missing data scenarios [29].

Random Forest (RF): Ensemble of decision trees trained 
on bootstrap samples with random feature subsets, robust 
to overfitting and nonlinearities [28-32].

K-Nearest Neighbors (KNN): Instance-based method 
classifying by majority vote of nearest neighbors using 
distance metrics; effective but computationally expensive 
in high dimensions [33].

Hybrid Model: A voting ensemble combining DT, GBM, 
and XGBoost leveraged their complementary strengths to 
improve classification of milk yield (low, medium, high). 
Ensemble consensus reduces misclassification risk and 
enhances generalization.

Performance Evaluation Metrics and Validation

Due to class imbalance, traditional accuracy can be 
misleading [11,34,35]. Thus, multiple metrics were used:

Accuracy: Ratio of correct predictions but less informative 
for imbalanced data (Eq. 1).

				    (1)

Here, FP denotes false positives and FN denotes false 
negatives.

Precision (P): Correct positive predictions among all 
positive predictions (Eq. 2).

				    (2)

Recall (R): Correct positive predictions among all actual 
positives (Eq. 3).

					    (3)

F1-score: Harmonic mean of precision and recall, 
balancing sensitivity and specificity, prioritized here with 
class-weighting to handle imbalance (Eq. 4) [36,37].

					     (4)

ROC-AUC: Threshold-independent measure of 
discrimination ability, calculated as weighted average over 
all class pairs (OvO approach) [38]. Fig 1. Workflow diagram
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Validation Techniques

10-Fold Cross-Validation: Dataset split into ten folds; 
each fold used once as test data to provide unbiased 
performance estimates (10% test, 90% train per fold) [39].

Bootstrap Sampling: To rigorously assess the statistical 
reliability, stability, and generalizability of model 
performance, a systematic bootstrap resampling strategy 
was employed in this study. This technique entails the 
generation of multiple resampled datasets by randomly 
drawing observations from the original dataset with 
replacement, thereby facilitating an evaluation of model 
behavior under varied sampling scenarios. Specifically, 
50 independent bootstrap samples, each consisting of 10 
randomly selected observations, were generated. These 
samples were subsequently used to investigate the variability 
in model predictions and to estimate performance stability 
and robustness [40]. Remarkably, the results demonstrated 
consistently perfect performance, with both accuracy and 
weighted F1-scores achieving 1.00 across all resampled 
datasets. These findings provide strong empirical evidence 
supporting the robustness, reliability, and invariance of the 
proposed models across varying data subsets. Furthermore, 
the bootstrap approach functioned as a powerful statistical 
tool for deriving more reliable estimates of model variance 
and predictive error, particularly in contexts characterized 
by limited data availability and potential shifts in data 
distribution. Overall, the methodology reinforces 
confidence in the models’ generalization capability 
beyond the original training data, ensuring dependable 
performance in real-world applications.

Hyperparameter Tuning and Model Optimization

Hyperparameters external model settings were optimized 
via grid search combined with 10-fold CV to maximize 

weighted F1-score. This ensured balanced performance 
across classes and avoided overfitting. Optimization was 
performed for DT, GBM, and XGBoost.

Hyperparameters were chosen considering model 
complexity, overfitting risk, and class differentiation. 
After tuning, each algorithm was retrained on the full 
dataset with optimal hyperparameters. This improved 
both individual model performance and the hybrid 
model’s overall effectiveness. Results from the original and 
dimensionally reduced datasets are presented, comparing 
individual models and the hybrid ensemble. Evaluation 
focuses on metrics, especially the weighted F1-score, with 
comprehensive discussion of findings.

Results
The creation of effective AI- and ML-based prediction 
systems requires a robust data pipeline, including: (1) 
data collection, (2) transformation into suitable formats, 
(3) secure storage, (4) analytical modeling and (5) 
presenting interpretable results. In this study, these steps 
were systematically applied to predict lactation milk 
yield. Nine classification algorithms were tested, and the 
effects of dimensionality reduction and model choice on 
performance were compared.

Step 1 - Data Collection: Relevant data were systematically 
gathered for analysis.

Step 2 - Data transformation: All features were 
standardized using the Robust Scaler (Eq. 5) and nine 
outliers were removed with the LOF algorithm [21].

			   (5)

Step 3,4 - Data storage and data analysis: Basic statistics 
and correlations were examined to understand dataset 

Table 1. Calculated Statistical Values for the Categories of the Dependent Variable (n=128)

Class Number Min. Average Median Max. Lower 
Bound

Upper 
Bound

Decision 
Boundaries

Low Milk Yield (0) 39 6208 7067.95 7203 7561 6926.22 7209.67 7561.2

Medium Milk Yield (1) 63 7563 8269.02 8296 8903 8168.42 8369.62
8915.6

High Milk Yield (2) 26 8924 9401.65 9409.5 9966 9289.31 9514

Fig 2. Classification of lactation milk yield values for 128 Holstein cows 
(Classification Model)
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structure. A moderate negative correlation (-0.7) was 
found between the Milking Days Count (MDC) and 
Calving Date (CD), suggesting that cows with later calving 
dates tended to have fewer milking days. Based on expert 
opinion, the continuous dependent variable, lactation milk 
yield, was categorized into three classes (low, medium, 

high) using the 30th and 80th percentiles (7.561,2 kg; 
8.915,6 kg). Class imbalance was addressed by assigning 
higher weights to minority classes [30]. Class distribution 
is shown in Table 1, with a visual representation in Fig. 2.

Class imbalance occurs when some classes have far 
more samples than others. To address this, class weights 

Table 2. Performance results for all scenarios

Algorithms
Performance Evaluation Criteria

Accuracy F1 Weighted Roc-Auc Ovo 
Weighted

PCA

MLP 0.49 0.36 0.55

LR 0.33 0.28 0.60

KNN 0.45 0.42 0.53

DT 0.45 0.44 0.56

RF 0.48 0.44 0.60

Adaboost 0.41 0.36 0.57

GBM 0.45 0.43 0.56

XGBoost 0.45 0.43 0.54

LightGBM 0.41 0.40 0.57

LDA

MLP 0.52 0.41 0.58

LR 0.34 0.27 0.61

KNN 0.44 0.40 0.56

DT 0.34 0.33 0.48

RF 0.44 0.40 0.56

Adaboost 0.47 0.40 0.58

GBM 0.43 0.41 0.55

XGBoost 0.41 0.40 0.53

LightGBM 0.37 0.36 0.58

Before Hyperparameter 
Optimization

MLP 0.51 0.35 0.52

LR 0.29 0.23 0.56

KNN 0.45 0.41 0.54

DT 0.30 0.29 0.46

RF 0.45 0.42 0.56

Adaboost 0.42 0.38 0.55

GBM 0.46 0.45 0.56

XGBoost 0.44 0.43 0.58

LightGBM 0.38 0.37 0.57

After Hyperparameter 
Optimization

KNN 0.52 0.45 0.59

DT 0.49 0.47 0.61

RF 0.47 0.40 0.65

Adaboost 0.46 0.44 0.58

GBM 0.55 0.53 0.68

XGBoost 0.47 0.51 0.62

LightGBM 0.52 0.47 0.66

Hybrid(DT+GBM+XGB) 1.00 1.00 1.00
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were incorporated into the Decision Tree’s Gini Index, 
emphasizing minority classes and improving model 
robustness [30]. Lactation milk yield was classified into 
low, medium, and high, with higher weights assigned to 
underrepresented groups.

Following the training and hyperparameter tuning 
procedures described in previous sections, the models 
were evaluated on three different datasets: (a) the original 
feature set, (b) features reduced via Principal Component 
Analysis (PCA), and (c) features reduced via Linear 
Discriminant Analysis (LDA). Performance results for 
these scenarios, obtained via 10-fold cross-validation, are 
presented in Table 2.

The results obtained through PCA and LDA indicate 
that most models experienced either a slight decrease 
in performance or yielded comparable outcomes. This 
suggests that reducing the feature space to two components 
did not significantly enhance model learning. This 
finding is expected, as the original dataset contained only 
five features; thus, reducing it to two components may 
have resulted in some information loss. Nevertheless, the 
performance differences were generally minör for instance, 
the Random Forest (RF) model achieved a weighted F1 
score of 0.42 on the original dataset and 0.40 with LDA. 

These analyses provided valuable insights into the impact 
of dimensionality reduction on model performance. At 
this stage, the models achieving the highest F1 scores were 
GBM, XGBoost, and RF. The classification accuracies of 
the hybrid model developed using the bootstrap sampling 
method were compared with those of DT, GBM, and 
XGBoost. For this analysis, 50 bootstrap samples were 
generated, each containing 10 observations. Under these 
bootstrap sampling conditions, the accuracy scores of DT, 
GBM, XGBoost, and the hybrid model were evaluated. As 
a result, the average accuracy and weighted F1 score were 
obtained as 1.00.

Fig. 3 illustrates the distribution of weighted F1 scores for 
individual models across bootstrap samples. While the 
Decision Tree (DT) model shows considerable fluctuation, 
the other models and the hybrid model consistently 
achieved a perfect score, exhibiting the highest and most 
stable performance across all bootstrap subsets. The same 
experiment was repeated to verify accuracy, and identical 
results were obtained. 

The proposed hybrid model’s weighted ROC-AUC 
scores were evaluated across all possible pairwise class 
combinations using a One-vs-One (OvO) approach to 
provide a more detailed assessment of its performance. 

Fig 3. F1 comparisons for bootstrap sampling (10 observations * 50 samples)

Fig 4. ROC-AUC (One vs One) for the Hybrid Model
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These analyses offer a more comprehensive understanding 
of the model’s ability to discriminate between classes, 
highlighting its effectiveness in multiclass classification 
scenarios. The AUC score for all possible pairs was 1.00. 
Visualizations of these findings are presented in Fig. 4.

Variable importance scores were calculated to identify the 
most influential variables in the decision-making process 
of the Decision Tree (DT), Gradient Boosting Machine 
(GBM), and XGBoost models, which yielded the best 
scores after hyperparameter optimization. Service Period 
(SP) was identified as the most important variable for the 
DT model, Animal’s Age in Lactation (ALL) for the GBM 
model, and Milking Days Count (MDC) for the XGBoost 
model. These findings are intuitively significant, as longer 
milking durations and appropriate insemination intervals 
are generally associated with higher total milk production.

In addition, to analyze how the model makes individual 
predictions, a detailed examination of the decision path 
was conducted. In this context, the classification path 
followed by the Decision Tree model for cow number 41, 
which was selected to evaluate classification accuracy and 
overall model performance, is presented in Fig. 5. This 
approach serves as a crucial example for understanding 
the model’s decision-making process more transparently. 
Such individual case studies reveal not only the statistical 
performance of the model but also its interpretability for 

practical field applications [25].

The hybrid ensemble model, combining GBM, XGBoost, 
and DT via majority voting, outperformed all individual 
models, raising the best single-model F1-score (GBM: 
0.53) to 1.00. This reflects the complementary strengths 
of tree-based and boosting methods, producing a robust 
classification framework. Cross-validation and bootstrap 
resampling helped mitigate overfitting, though the small, 
imbalanced dataset remains a limitation.

The study aimed to classify Holstein cows’ milk yield 
(low, medium, high) using five features from 128 samples. 
Preprocessing included scaling, outlier removal, and 
correlation analysis. PCA and LDA were tested but 
discarded due to no performance gain. Nine algorithms 
were evaluated with weighted F1-score as the main 
metric. Boosting-based methods performed best after 
hyperparameter tuning, but the hybrid model achieved 
perfect separation, offering a reliable decision-support 
tool under similar constraints.

Discussion
This study demonstrated that the lactation milk yield 
levels (low, medium, high) of Holstein cows can be 
classified with high accuracy using supervised machine 
learning algorithms. In particular, the hybrid model 
integrating the strengths of Decision Tree (DT), Gradient 

Fig 5. Visualization of the classification result for the 41st observation using the dtreeviz library and 
the detailed presentation of the decision path
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Boosting Machine (GBM), and XGBoost achieved 
outstanding classification performance, with a weighted 
F1-score of 1.00. This result underscores the effectiveness 
of ensemble methods, even in the presence of challenges 
such as limited data and class imbalance. Previous studies 
have reported that boosting-based algorithms are capable 
of building robust and reliable models by reducing 
the risk of overfitting, especially in small and complex 
datasets [41-43]. In this study, the inclusion of biologically 
meaningful features such as age, number of lactations, 
insemination interval, and number of milking days played 
a crucial role in model performance. Proper integration 
of relevant biological and management-related factors 
directly enhanced classification accuracy. These findings 
emphasize that in cases of limited data, careful feature 
selection and preparation significantly improve model 
performance. Despite the pronounced class imbalance 
within the dataset, the model delivered high accuracy. 
In particular, the correct classification of low-yield cows 
was supported by highly sensitive performance metrics 
such as the weighted F1-score and ROC-AUC. The 
elimination of outliers, as well as preprocessing steps like 
data standardization and hyperparameter optimization, 
contributed significantly to reducing the negative impact 
of class imbalance. This finding confirms that appropriate 
data handling and modeling techniques can effectively 
address the challenges posed by imbalanced datasets [44-46].

This study makes a significant contribution to the 
development of decision support systems at the individual 
animal level. While previous research has primarily 
focused on farm-level management strategies using 
unsupervised learning techniques [13], the present study 
employs supervised algorithms to classify the lactation 
yield level of each cow individually. This enables the 
implementation of personalized, producer-specific 
management decisions. Furthermore, the use of a hybrid 
model that combines the complementary strengths of 
different algorithms has overcome the limitations of 
single-model approaches, resulting in more stable, reliable, 
and generalizable outcomes [47,48].

The study has several important limitations. First, the 
dataset used was exclusively composed of Holstein cattle 
from a single farm located in one geographic region. 
This restricts the generalizability of the model to other 
breeds (e.g., Jersey, Brown Swiss, Guernsey, Milking 
Shorthorn) or different environmental and management 
conditions. As highlighted in the literature, machine 
learning models often require retraining and validation 
to ensure their applicability across diverse environmental 
and operational contexts [49,50]. Secondly, the developed 
model was designed solely for classification purposes and 
does not provide quantitative predictions of milk yield. 
Employing regression-based models could offer more 

functional insights for production planning by enabling 
direct estimation of milk output [51,52]. Lastly, the model 
focuses exclusively on milk yield and does not incorporate 
other key production parameters such as fertility, feed 
intake, and health status. Integrating these factors would 
enable the development of a more comprehensive and 
holistic decision support system [53,54].

The integration of data-driven decision support systems 
into animal production processes not only enhances 
production efficiency but also contributes to the 
development of sustainable management approaches 
that prioritize animal welfare [55,56]. Advanced studies in 
this direction will facilitate the real-time application of 
data-based models, enabling production processes to be 
managed in a more traceable, optimized, and ethically 
grounded manner. Consequently, this will lead to scientific 
and practical solutions aimed at improving both economic 
performance and ensuring animal health and welfare.

This study demonstrated that machine learning methods 
can effectively classify lactation milk yield levels in 
Holstein cows with high accuracy, even under limited and 
imbalanced data conditions. The superior performance of 
the hybrid model highlights the critical role of carefully 
selected biologically relevant variables and comprehensive 
data preprocessing strategies in model success. The findings 
support the development of individual animal-based, 
data-driven decision support systems and emphasize the 
potential of artificial intelligence applications to enhance 
both productivity and animal welfare in livestock farming. 
However, the model’s reliance on data from a single breed 
and a geographically limited region presents a constraint 
regarding its generalizability. Future research should 
focus on validating the model across different breeds and 
environmental conditions, expanding it with regression-
based approaches for quantitative yield prediction, and 
integrating additional key production parameters such as 
health, fertility, and feed intake.

Such advancements would facilitate the integration of 
data-driven AI applications into real-time, sustainable, 
and ethical livestock management systems ultimately 
contributing to improved economic performance and 
enhanced animal welfare.
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