Effects of Subclinical Mastitis on Serum Estradiol and Tumour Necrosis Factor Alpha Levels During Estrus in Dairy Cows

Bayazıt MUSAL 1, Süheyla TÜRKYILMAZ 2, Hakkı Bülent BECERİKLİSOY 1, Cevdet PEKER 1, Eyyûp Hakan UÇAR 1

1 Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, TR-09010 Aydin - TURKEY
2 Adnan Menderes University, Faculty of Veterinary Medicine, Department of Microbiology, TR-09010 Aydin - TURKEY

Abstract

The effect of subclinical mastitis on serum estradiol and tumor necrosis factor alpha (TNF-α) levels during oestrus and subsequent fertility was investigated in dairy cows. 40 cows were divided into two groups as healthy control (n=20) and subclinical mastitis (n=20), according to the results of California Mastitis Test (CMT) and bacteriological isolation and identification. Cows were synchronised with a standard 7 day Ovsynch protocol. Following prostaglandin F2alpha (PGF2α) administration, cows were examined with trans-rectal ultrasonography at 24, 36 and 48th h, dominant follicle diameters were recorded and blood samples were collected. Sixteen h after the second gonadotrophin-releasing hormone (GnRH) administration, cows were inseminated and a final examination of ovaries were performed and dominant follicle diameters were recorded. estradiol and TNF-α concentrations were analysed with ELISA in serum samples. No significant differences were found between the follicular diameters and growth patterns (P>0.05) of the two groups while estradiol concentrations were significantly higher in the subclinical mastitis group than the control group at 24 and 48 h after PGF2α injection (P=0.017 and P=0.036 respectively). Also TNF-α levels were significantly higher in cows with subclinical mastitis than the control group (P=0.03). Positive correlations were observed between estradiol and TNF-α levels, in both groups (Control Group: R=0.512, P=0.021; Subclinical Mastitis Group: R=0.826, P<0.001). Overall pregnancy rate was higher in the control group (40%) than the subclinical mastitis (25%) group however the difference was not statistically significant (P>0.05). In conclusion estradiol and TNF-α concentrations were found higher in cows with subclinical mastitis during estrus and this data may be due to a luteal insufficiency during the initiation of synchronization, however further studies are required.

Keywords: Cow, Subclinical mastitis, Estradiol, TNF-α
INTRODUCTION

It has been well documented that both clinical and subclinical mastitis have negative impact on reproductive performance of dairy cows [1-4]. The interval for first post-partum insemination were delayed and the service for conception rate significantly increased in cows experiencing clinical mastitis compared to non-mastitic cows [2,4,5]. Long term nature of subclinical infections can damage the long process of follicular growth at various time points. It was observed that 32% of cows having subclinical mastitis exhibited low follicular estradiol concentrations compared to the uninfected and other subclinically infected cows. Low follicular estradiol levels in these cows were thought to be originated from the abnormally low expression of luteotrophic hormone (LH) receptor and steroidogenic genes in both theca and granulosa cell layers. However follicular estradiol concentrations in the remaining two-thirds of the subclinically infected cows were not affected and the reason of this difference remained unclear [6].

The release of proinflammatory cytokines such as interleukins, tumor necrosis factor-α (TNF-α) and eicosanoids, as a result of intramammary infections, have been suspected to be the possible causes of alterations in steroid production inside the follicular environment. The release of these substances in milk have been clearly observed during acute phase of challenge with experimental *Escherichia coli* Lipopolysaccharide (LPS) endotoxin [7]. Moreover in-vitro treatment by TNF-α reduced theca and granulosa cells androstenedione and estradiol concentrations, respectively whilst the in-vivo effects were less pronounced [8]. Although these results have been observed clearly in clinical mastitis cases caused by Gram negative bacteria or via exposure to LPS endotoxin, mucopreotic layers of Gram positive pathogens also have been reported to possess the capability of inducing pyretic and cytokine responses like TNF-α [9].

Most of the previous studies have been focused on the effect of clinical mastitis on reproduction while the information about the subclinical cases remains relatively low. In two studies the increase in levels of milk TNF-α in naturally occured subclinical mastitis cases have been reported [10,11]. Only in one of these systemic concentrations of TNF-α were measured and found to be unaffected [10]. In the present study our aim was to observe follicular growth patterns, estradiol and TNF-α concentrations in serum of healthy cows and cows with subclinical mastitis in order to detect a possible detrimental effect of subclinical mastitis on these parameters thus pregnancy rates obtained at a single fixed time artificial insemination.

METERIAL and METHODS

The study was conducted in a dairy herd with a total size of 120 Holstein cows in the district of Izmir city. The cows were housed in tie-stall barns, connected with open air pens year-round without pasturing. Cows had free access to water, mainly fed with corn silage and concentrate feed (Crude Protein: 16.72%, 2800 kcal/kg) and bedded on mats inside the housing. The cows were milked twice daily and average milk production in the course of study was 32 kgs. The study was conducted between November 2014 - May 2015. A total of 40 multiparous cows with an average of 145 days in milk, were included in the study during monthly visits as groups consisting of 8 cows approximately. Cows (mean age: 4.8 years) free from any kind of infectious disease, especially checked out for clinical mastitis, metritis and foot problems were chosen for the study. All procedures used in the study were approved by the Local Ethical Comittee of Adnan Menderes University (ADÜ-HADYEK-Session number: 64583101/2014/059).

Primarily a standard Ovsynch protocol were administered starting by an injection of 2.5 mL of GnRH (Buserelin acetate, 0.004 mcg/ml, i.m. inj. sol., Receptal®, Intervet, Turkey) regardless of the stage of the cycle. On Day 7 a single dose of 5 ml PGF$_2$α (Dinoprost thromethamine, 5 mg/ml i.m. inj. sol., Dinoliotic®, Zoets, Turkey) was injected. On 24th, 36th and 48th h after PGF$_2$α injection, both ovaries were examined for dominant follicle by a portable real time B-mode ultrasonography (USG) equipped with a 5-7.5 MHz linear probe (Hasvet 838, Hasvet, Antalya) and the size of the dominant follicles were recorded. In addition to the examinations, each time a blood sample were collected into silicone coated tubes from *vena jugularis*. The blood samples were kept in room temperature for several h for clot formation and then sera were harvested following centrifugation with 3,000 rpm for 10 min. The serum samples were dispensed into microcentrifuge tubes, labeled and stored in -20°C until the time of hormone analysis. On 48th h upon transrectal ultrasonography and blood samplings the second GnRH injection were administered. Following this, at 16-18 h a final USG examination performed, the size of the follicle recorded and the cows were inseminated by the herd’s veterinarian. Finally pregnancy diagnoses were performed by transrectal USG around day 45 following artificial insemination to all cows.

On the first day of examinations, in other words at the 24th h following the PGF$_2$α administration in the milking parlor California Mastitis Test (CMT) was used to assign the cows into groups as healthy control (n=20) and subclinical mastitis (n=20). Cows having 2 or more mammary lobes CMT +1 or higher scores were included into the subclinical mastitis group. Following this milk samples from all cows were collected aseptically into tubes and these samples were taken immediately to the Laboratory of Department of Microbiology, Faculty of Veterinary Medicine, Adnan Menderes University (Aydin city).

Isolation and Identification of Pathogens

Milk samples were inoculated into blood agar and incubated at 37°C for 24 h. Samples obtained from the
colonies were then passed into brain heart infusion agar with 20% glycerine and stored in -20°C for further molecular analysis of bacteria type. At the end of the field study all of the stored samples were thawed and isolated bacterial DNA were extracted using Instagen DNA extraction kits (InstaGene matrix, Bio-Rad, CN: 732-6030). Using PCR 16s rRNA, gene fragments were amplified and sequential analysis were done for bacterial identification. For this purpose S16520 (5’ AGA GTT TGA TCC TGG CTC AG 3’) and 16S1390 (5’ GAC GGG CGG TGT GTA CAA) universal primers were used. PCR products were visualised in 1% gel. These amplicons were sent to a commercial laboratory (Macrogen Inc./Korea) for sequential analysis. Later on the results of the sequential analysis were compared with the gene bank and species identification of the isolated bacteria were completed.

Analysis of Estradiol and TNF-α Levels

Stored serum samples were sent to a commercial laboratory (Farmasina, Istanbul/Turkey) for the analysis of estradiol and TNF-α using bovine species specific ELISA kits (Sunred Biotechnology Company®, China). The catalogue numbers, sensitivities and assay ranges and inter-assay and intra-assay coefficients of variations of these kits were as follows, respectively: Bovine estradiol ELISA kit (CN:21-04-210), 0.801 pg/mL, 1-300 pg/mL, <9%, <11%; Bovine TNFα ELISA kit (CN:201-04-0007), 14.155 ng/L, 15-4000 ng/L, <9%, <11%. While estradiol concentrations were measured in all of the samples, TNF-α were measured only in the first (24th h) samples.

Statistical Analysis

Statistical analyses were performed using the SPSS software version 22. For all variables tested, normality was checked by Shapiro-Wilk test. Intergroup relationships of the parameters (follicular size, estradiol, TNF-α) were analysed with Independent Samples T-test. The observed differences in parameters (follicular size, estradiol) by time were analysed with variance tests for repeated measures and Bonferroni pairwise comparisons. Correlations were analysed by Pearson correlation tests. Differences with P values less than 0.05 were considered to be significant.

The results were presented as the mean ± SEM.

RESULTS

Intramammary Infections

The aseptically collected milk samples have revealed a variety of mastitis pathogens mostly consisting of Gram positive cocci from the 20 subclinically infected cows. All of the cows in the mastitis group had two or more mammary lobes infected and most of these cows had multiple pathogens residing in each mammary lobe. The types and distribution of these pathogens are demonstrated in Table 1.

Follicular Growth

Mean follicle diameters at 24, 36, 48 and 64th h were all slightly larger in the controls compared to the subclinically infected cows however these differences were not statistically significant (P>0.05). Also no statistically significant differences were observed in the follicular growth patterns throughout the repeated examinations inside each group (P>0.05). Follicle diameters throughout the study are presented in Table 2.

Table 1. The isolated and identified mastitis pathogens

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group</th>
<th>No of Lobes Isolated</th>
<th>No of Cows Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Positive Pathogens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Coagulase negative Staphylococci (CNS)</td>
<td>13</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Corynebacterium spp.</td>
<td>18</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Aerococcus viridans</td>
<td>23</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Bacillus spp.</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Gram Negative Pathogens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Different superscripts in the same column (a,b) indicate significant differences, NS: Not significant (P>0.05)
Hormone Concentrations

Serum estradiol concentrations (pg/mL) of the subclinically infected cows were higher than the control group at 24 (63.85±7.65 and 44.2±1.94, respectively); 36 (60.95±7.1 and 45.89±3.59, respectively) and 48 (59.94±8.19 and 41.4±2.39, respectively) h while these differences were significant at 24 and 48th h (P=0.017 and P=0.036 respectively). The decrease in the mean estradiol concentration from 45.89±3.59 to 41.4±2.39 in the control group throughout 36 to 48th h were also significant (P=0.043).

TNF-α (ng/L) concentrations measured from the samples at 24th h after the PGF2α injection in the subclinically infected and the control groups were 954.16±89.97 and 732.54±39.89 respectively and the difference was statistically significant (P=0.03).

Conception rate in the control group was higher than in the subclinical mastitis group and they were 40% (8/20) and 25% (5/20) respectively. However the difference was not found statistically significant (P>0.05).

Serum TNF-α was significantly correlated with estradiol concentrations at 24th h in both groups (Table 2). However no significant correlations were found between follicular size and estradiol concentrations (P>0.05).

DISCUSSION

PCR based bacterial identification methods like used in this study makes it possible to detect bacteria more sensitively at the species level [12]. The isolated pathogens were mostly consisted of Aerococcus viridans, Corynebacterium spp., coagulase-negative staphylococci (CNS) and S. agalactiae. The first three bacteria most frequently isolated in this study, are known to reside on the cows teat skin, around the teat orifice papillare and sometimes cause subclinical mastitis. The species level [12]. The isolated pathogens were mostly consisted of Aerococcus viridans, Corynebacterium spp., coagulase-negative staphylococci (CNS) and S. agalactiae. The first three bacteria most frequently isolated in this study, are known to reside on the cows teat skin, around the teat orifice papillare and sometimes cause subclinical mastitis. The first three bacteria most frequently isolated in this study, are known to reside on the cows teat skin, around the teat orifice papillare and sometimes cause subclinical mastitis.

Serum estradiol concentrations (pg/mL) of the subclinically infected cows were higher than the control group at 24 (63.85±7.65 and 44.2±1.94, respectively); 36 (60.95±7.1 and 45.89±3.59, respectively) and 48 (59.94±8.19 and 41.4±2.39, respectively) h while these differences were significant at 24 and 48th h (P=0.017 and P=0.036 respectively). The decrease in the mean estradiol concentration from 45.89±3.59 to 41.4±2.39 in the control group throughout 36 to 48th h were also significant (P=0.043).

Decresed steroid production capacity in the preovulatory follicles of cows with either clinical or subclinical mastitis have been reported previously [6,21]. Follicular estradiol concentrations in one thirds of subclinically infected cows were significantly lower than healthy cows [20]. Also an extended estrus - ovulation interval accompanied with lower plasma estradiol concentrations were observed in 30% of cows with mastitis. However in this study serum estradiol concentrations were all higher in the subclinical mastitis group than the control cows and at 24th h of PGF2α injection were 1.85±0.6 and 1.79±0.5 respectively and the differences were significant (P<0.05). Furman et al. [22] have reported that experimental subclinical intramammary infection did not cause an immediate decline in follicular estradiol but rather a marked, delayed decline in estradiol concentrations 16 days after mastitis induction was terminated. Moreover large portion of cows (especially consisting of Gram positive group) were not affected by the administration and follicular estradiol levels remained normal. These variations among cows were presumed to be related to individual, genetic differences. Authors have also suggested that the antral and medium sized follicles are more susceptible to stress and the effect of subclinical intramammary infections (IMI) thus occurs belatedly [22]. In the present study as previously discussed above the mean follicular diameters of cows were higher than observed in the other studies and consequently larger follicles may be less affected from subclinical mastitis.

Timed AI programs such as used in this study depends on the effect of an initial GnRH injection to ovulate or luteinize the existing follicles. The presence of a functional luteal structure has been shown to be an important factor in the development of the new follicular wave thus the preovulatory follicle. Progesterone supplementation via a...
CIDR device to cows that do not have a functional luteal structure at the initiation of ovsynch protocol have significantly increased circulating progesterone levels and subsequent fertility [23]. During early stages of diestrus progesterone concentrations are lower and LH pulses occur with greater frequency. Before the corpus luteum develops after ovulation, large estrogen-active follicles develop in the ovaries. As the luteal structure advances to mid phase, progesterone concentrations are increased and LH pulses are decreased. Administration of progesterone to ovarietomized cows also suppresses the release of LH and, both exogenous and endogenous sources has a similar supressive action in inhibiting release of LH pulses from the anterior pituitary [24]. TNF-α and IL-1β release may cause endogen PGFα release from the endometrium which in turn causes luteolysis [25]. In the present study higher serum TNF-α levels in the subclinical mastitis group may have caused insufficient development of luteal structure causing lower progesterone levels at the time of first GnRH injection thus leading to greater release of LH pulses from the anterior pituitary causing higher estradiol levels. Higher LH pulses during the development phase of follicular wave may have caused estrogen active persistent follicles, which may not respond to GnRH treatment as indicated by Lopez-Gatius et al.[26]. Consequently overall fertility may be decreased in the subclinical mastitis group due to low ovulation and/or fertilization rates, however the difference was not significant (P>0.05).

No significant correlations between follicular diameters and estradiol levels at any time point in both groups were observed where this is a finding that could be expected in fixed time AI protocols especially in cows that did not exhibit estrus. Nearly 60% of cows did not display estrus behaviour during fix time AI protocols and follicular diameters were not correlated with serum estradiol concentrations in these cows [27].

A series of studies have reported high milk and serum concentrations of TNF-α in natural or experimentally induced E. coli mastitis cases [7,11,28,29]. Riollet et al. [10] also have observed that in chronic S. aureus infections interleukin together with TNF-α, other cytokines such as IL-1α, IL-1β, IL-6, IL-10 and IL-12 regulatory cytokine mRNA were synthesized in cells derived from infected mammary glands however cell subpopulations in blood from infected cows were not modified, indicating that immune responses to chronic intramammary infections were not manifested systemically. However as TNF-α is an important marker in the modulation of immune responses to infections and pathogens - host related variations may occur during intramammary infections, researchers of the present study aimed to re-test the possible role of TNF-α in mastitis related follicular/steroidogenic alterations during estrus in cows. Our results demonstrated that at 24th h following PGFα injection, mean serum TNF-α levels of subclinically infected cows were found significantly higher than the control cows (P<0.05). This result is in contrast with the findings of Riollet et al. [7]. It can be said that in the present study multiplicity and variety of the pathogens may have caused this condition. However most of the pathogens were in Gram positive nature and a large portion of them were opportunistic mastitis bacteria causing mild to moderate rises in somatic cell counts. In addition serum TNF-α levels in both groups were at considerably low levels when compared to the researches demonstrating the TNF-α levels during endotoxin challenge [7,30]. This seems to be in accordance with the mild nature of isolated pathogens that they may have caused much lower TNF-α release than endotoxemic bacteria but not totally absent.

Another interesting data in this study was that estradiol and TNF-α levels were significantly correlated in both subclinical mastitis group (P<0.001, R=0.826) and the control group (R=0.21, R=0.512). Kahl et al. [28] have reported that the production of TNF-α during endotoxin challenge is enhanced during the follicular phase compared to the luteal phase in beef heifers. The above mentioned data in the present study may represent a similar effect of estradiol on the production of TNFα. Not presuming the effect of subclinical mastitis on TNF-α unsound, estradiol may have caused an amplifying effect on TNF-α levels. Sakumoto et al.[31], have reported that in cell cultures obtained from theca and granulosa cells of bovine small (2-5 mm) and large (12-18 mm) follicles, exposure to TNF-α resulted in inhibition of estradiol secretion in small follicles, but did not in large follicles. The reason for this was the low TNF-α receptor expression in the granulosa and theca cells of preovulatory follicles. Concerning this data and regarding the follicular growth patterns and serum estradiol concentrations observed in this study, it can be said that preovulatory follicles were not affected by the TNF-α content in serum.

As this study was focused on follicular growth, estradiol and TNFα levels in cows during estrus, data concerning pre and post-synchronisation progesterone levels, luteal structures and ovulation response to the initial GnRH injection were lacking. Together with these and levels of other cytokines examined during diestrus and estrus more comprehensive data would be obtained.

In conclusion follicular growth patterns were not affected by subclinical mastitis while estradiol and TNF-α was higher in the cows with subclinical mastitis than in the control group. Estradiol and TNF-α concentrations were positively correlated and this may indicate a possible increasing effect of estradiol on TNFα. Authors have hypothesised that high estradiol levels in the cows with subclinical mastitis could be a result of luteal deficiency due to cytokine release, however this requires further studies with intense data.

REFERENCES

1. Moore DA, Cullor JS, Bondurant RH, Sischo WM: Preliminary field
Effects of Subclinical Mastitis ...

