Thymoquinone, the Main Constituent of *Nigella sativa*, Could Impact on Adenosine A₂ Receptors in Ovalbumin-sensitized Guinea Pigs

Zahra MIRZAMOHAMMADI¹ Behzad BARADARAN² Dariush SHANEHBANDI² Rana KEYHANMANESH³ Amir Ali SHAHBAZFAR⁴ Laleh PEJMAN¹

¹ Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IRAN

² Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, IRAN

³ Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, IRAN

⁴ Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, IRAN

Article Code: KVFD-2015-14135 Received: 31.07.2015 Accepted: 23.12.2015 Published Online: 14.01.2016

Abstract

Thymoquinone has demonstrated anti-asthmatic effects in many studies but its exact mechanism is not yet fully known. This investigation aims to demonstrate its prophylactic effect in the presence of selective A_{2A} and A_{2B} adenosine receptors (AR) antagonist; MRS1706 and ZM241365, in sensitized guinea pigs. The gene expression of A_2 AR in blood lymphocytes and lung tissue, lung pathological changes and blood cytokines were evaluated in seven groups. The experiments in blood lymphocytes and lung tissue showed that thymoquinone could increase $A_{2A}AR$ mRNA expression and decrease A_{2B} AR mRNA expression significantly (P<0.001 to P<0.05); however sensitization had opposite effects. Administration of A_{2A} receptor antagonist attenuated inflammation and A_{2B} receptor antagonist together relieved inflammation. Gene expression of A_{2B} receptor showed that thymoquinone administration has more influence on blood lymphocytes while administration of the selective A_{2B} receptor antagonist together relieved showed some of the therapeutic effects of thymoquinone in reducing asthma symptoms might be partially mediated through A_2 adenosine receptors.

Keywords: Asthma, Adenosine, MRS1706, ZM241365, Gene expression

Nigella Sativa'nın Biyoaktif Komponenti Olan Timokinon Ovalbuminle Uyarılmış Ginedomuzlarında Adenozin A₂ Reseptörlerini Etkileyebilir

Özet

Timokinonun birçok çalışmada anti-astmatik etkileri olduğu gösterilmesine rağmen tam mekanizması tamamıyla anlaşılamamıştır. Bu çalışma A_{2A} ve A_{2B} adenozin reseptör (AR) antagonistlerinin (MRS1706 ve ZM241365) mevcudiyetinde timokinonun uyarılmış ginedomuzlarındaki proflaktik etkisini araştırmak amacıyla yapılmıştır. Çalışmada toplam yedi grupta kan lenfositleri ve akciğer dokusunda A₂ AR gen ekspresyonları, akciğerdeki patolojik değişiklikler ve kan sitokinleri değerlendirildi. Kan lenfositleri ve akciğer dokusunda yapılan incelemeler timokinonun A₂AAR mRNA ekspresyonunu arttırdığını ve A_{2B} AR mRNA ekspresyonunu ise anlamlı oranda azalttığını, ancak uyarılmanın ters etki yaptığını ortaya koydu (P<0.001 to P<0.05). A_{2A} reseptör antagonisti yangıyı azaltırken ve A_{2B} reseptör antagonisti astma tarafından oluşturulan yangısal değişikliklere karşı koruyucu etki gösterebilir. Ayrıca, timokinon ve A_{2A} reseptör antagonistinin birlikte uygulanması yangıyı hafifletti. A_{2B} reseptör gen ekspresyonu timokinon uygulamasının kan lenfositleri üzerinde daha etkili olduğunu A_{2B} reseptör antagonistinin ise akciğer dokusunda daha etkili olduğunu gösterdi. Elde edilen sonuçlar astma semptomlarının azaltılmasında timokinon uygulamasının terapötik etkilerinin kısmen A₂ adenozin reseptörleri yoluyla oluştuğunu göstermiştir.

Anahtar sözcükler: Astma, Adenozin, MRS1706, ZM241365, Gen ekspresyonu

+98 413 3364664

keyhanmaneshr@tbzmed.ac.ir; rkeyhanmanesh@gmail.com

^{x²} İletişim (Correspondence)

INTRODUCTION

Asthma is a chronic and acute respiratory disease of the airways ^[1] which has been identified by various properties such as the increased responsiveness of airways to physical and chemical stimuli ^[2]. In asthma, the responses of the immune system and related cells including T lymphocytes are influenced. Asthma is accompanied by the increase in the immune system of Th₂ cells and a decrease in the immune response of Th₁ cells. Th₂ cells are the regulators of pre-inflammatory responses and Th₁ cells directly or indirectly inhibit Th₂ cells ^[3,4]. Therefore, the increased level of IL-4 (cell markers of Th₂) and decreased level of IFN- γ (cell markers of Th₁) can be seen in this disease ^[5,6].

Other regulating factors which are propounded in the inflammation are adenosine and adenosine receptors. Adenosine is a purine nucleoside of adenine that mediates the various physiological functions through four transmembrane receptors; A_1 , A_{2A} , A_{2B} and A_3 ^[7]. In asthmatic patients, the level of adenosine in liquid bronchoalveolar lavage is noticeably more than the healthy people^[8]. Moreover, inhaled adenosine causes bronchial contraction in asthmatic patients but in healthy people it does not cause any contraction ^[9]. In fact, adenosine receptors act as sensor and extracellular adenosine acts as a reporter ^[10]. The stimulation of adenosine A_{2A} receptor inhibits the release of inflammatory mediators ^[11] and also prevents the activation of T cells [12] and inhibits the mobilization of inflammatory cells in the airways. The stimulation of A_{2B} receptor in human beings activates the mast cells [13], and as a result, increases the release of IL-8 [14]. The inhibition of A_{2B} receptors can have helpful therapeutic effects on asthma^[15] and lead to the decrease of bronchospasm in response to such stimuli as AMP^[16].

Nowadays, a lot of medicines are used for treating asthma, but the long-term use of them results in therapeutic resistance and will have some undesirable side effects. Therefore, in recent years, the researchers have tried to find new medicines with high effectiveness and fewer side effects. One of these approaches is using herbs. Many studies showed that *Nigella sativa* had anti-inflammatory and therapeutic effects ^[17-20]. Moreover, our previous studies demonstrated that the extract of *Nigella sativa* and its main constituent, thymoquinone, had preventive effects on asthma and precluded its inflammatory and pathological changes ^[5,6,21,22].

The exact mechanism of anti-asthmatic effect of thymoquinone is not known yet and the adjustment of Th_1/Th_2 balance has been suggested as one of the possible mechanisms for thymoquinone. In light of this, and in order to find out the intracellular mechanisms of thymoquinone, this investigation was proposed to demonstrate its prophylactic effect on gene expression of A_2 adenosine receptors in blood lymphocytes and lung tissue in the

presence of selective A_{2A} and A_{2B} adenosine receptor antagonists; ZM241365 and MRS1706, in asthmatic guinea pigs. In addition, blood IL-4 and IFN- γ level and lung pathological changes were assessed in different groups.

MATERIAL and METHODS

Animal Sensitization and Animal Groups: Seventy male adult Dunkin-Hartley guinea pigs (400-700 g) were used throughout the study. After transportation, they were allowed to acclimatize to the new situation for ten days. They were kept in individual cages at 22±2°C on a 12-h light/ dark cycle and allowed free access to standard chow and water. Then the animals were randomly divided into seven groups; control group (C), sensitized group with ovalbumin (S), sensitized group pretreated with thymoguinone (3 mg/kg i.p.; S+TQ) [23], sensitized group pretreated with selective A_{2A} adenosine receptor antagonist (ZM241385, 3 mg/kg i.p.; S+Anta A_{2A})^[24], sensitized group pretreated with selective A_{2B} adenosine receptor antagonist (MRS1706, 3 mg/kg i.p.; S+Anta A_{2B})^[9], sensitized group pretreated with thymoquinone and A_{2A} adenosine receptor antagonist $(S+TQ+Anta A_{2A})$ and sensitized group pretreated with thymoquinone and A_{2B} adenosine receptor antagonist (S+TQ+Anta A_{2B}). Thymoquinone, ZM241385 and MRS1706 with 3 mg/kg dose were injected intraperitoneally on day 10 of induction protocol. All groups were housed in climate-controlled animal guarters and were given water and food ad libitum, while a12-h on/12-h off light cycle was maintained.

Sensitization of animals to ovalbumin (OA) was performed using the method used in our previous study ^[25]. Briefly, guinea pigs were sensitized to ovalbumin (Grade II Sigma Chemical Ltd., UK) dissolved in saline by injecting 100 mg i.p. and 100 mg s.c. on the first day and a further 10 mg i.p. on the 8th day. From day 14, sensitized animals were exposed to an aerosol of 4% ovalbumin for 18±1 days, 4 min daily. The aerosol was administered in a closed chamber, dimensions $30 \times 20 \times 20$ cm. Control animals were treated similarly but saline was used instead of ovalbumin solution. The study was approved by the ethical committee of the Tabriz University of Medical Sciences (No: TBZMED.REC.1394.862).

Evaluation of the Gene Expression of A₂ **Receptors in Blood Lymphocytes and Lung Tissue:** One day after the induction period, the animals were killed by cervical dislocation and 5 ml blood sample and approximately, 100 µg of left lung tissue were obtained immediately. At first, blood RBCs were eliminated by RBC lysis buffer containing 9 g NH₄Cl, 1g KHCO₃ and 0.2 ml of 0.5M EDTA per liter. The pH was adjusted to 7.3. Then TRIzol reagent was used for RNA extraction. Lung specimens were also grinded and subjected to total RNA extraction by 1 ml of TRIzol reagent (life technologies Co) according to the manufacturer's recommendations. After that, cDNA was synthesized by Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific Co) using 5 µg of total RNA. The effect of thymoquinone on the gene expression of A₂ adenosine receptors was investigated with RT-PCR. Specific primers were designed for control and receptor genes. A_{2B} primers were designed by OLIGO (version 5.0). The sequences were A_{2A} F: 5'-GCA GAA CGT CAC CAA CTA CTT-3', A_{2A} R: 5'-CAG GTC ACC AAG CCA TTG TA-3', A_{2B} F: 5'-CTT TGG CAT TGG ATT GAC TC-3' and A_{2B} R: 5'-CCA GCA TGA TGA GCA GTG G-3'. β-actin was employed as a housekeeping gene to normalize expression levels of target genes. Primer sequences for β-actin were: β-actin F: 5'-TCC CTG GAG AAG AGC TAC G-3' and β-actin R: 5'- GTA GTT TCG TGG ATG CCA CA-3'.

The cycling included denaturation at 94°C for 3 min followed by 30 cycles of 94°C for 30 s, 58°C for 40 s and 72°C for 30 s and a final extension at 72°C for 10 min. PCR products were electrophorized utilizing 1.5% agarose gel and appropriate amount of safe stain (Cinnagen Co,Islamic republic of Iran) and were visualized by gel documentation apparatus. 100 bp DNA ladder (SM0311, Fermentas Co.) was used as size marker. Finally the electrophoresed gene was photographed by document gene device and the intensity of bands was investigated through Image J software (National Institutes of Health, Bethesda, Maryland, USA) and normalized to its actin loading control.

Evaluations of Blood IL-4 and IFN-y Levels: A total of 5 ml peripheral blood was obtained immediately after sacrificing the animals and placed at room temperature for 1 h. The samples were then centrifuged at $3500 \times g$ at 4°C for 10 min. The supernatant was collected and immediately put at -70°C until analyzed. Finally, blood IL-4 and IFN- γ were measured using the enzyme-linked immunosorbent assay (ELISA) Sandwich method ^[6].

Pathological Evaluation: Lungs and trachea were kept in 10% (v/v) buffered formalin. A week later tissues were dried by a range of ethanol concentrations (70%-100%) through Passage method. The samples were saturated in paraffin and put into blocks after being cleared by xylol. Then 4 micron-width slices were prepared using microtome. Finally, the specimens were stained by hematoxylin-eosin (H&E) and evaluated under a light microscope. The pathological changes in the lungs of all groups included vascular and airways smooth muscle hypertrophy and hyperplasia, the presence of mucosal plug, respiratory epithelial denudation, inflammatory infiltration and emphysema^[5,21]. The pathological changes were scored according to previous studies as follows: 0: no pathologic changes, 1: patchy changes, 2: local changes, 3: scattered changes and 4: severe changes.

Statistical Analysis: All the results were considered as mean \pm SEM. The data of six sensitized groups were compared with controls using one-way analysis of variance (ANOVA) with Tukey-Kramer post-test. Furthermore, the

data of five pretreated groups were compared with sensitized guinea pigs using one-way analysis of variance (ANOVA) with Tukey-Kramer. The data of four pretreated groups were compared with S+TQ group using one-way analysis of variance (ANOVA) with Tukey-Kramer.

RESULTS

Analysis of A_{2A} Adenosine Receptor Gene Expression in Blood Lymphocytes: Compared to the control group, the gene expression of A_{2A} adenosine receptor in S and S+Anta A_{2A} groups decreased significantly (P<0.05 and percentage changes = -43% for S, P<0.01 and percentage changes = -62% for S+Anta A_{2A}) and in S+TQ group increased significantly (P<0.001 and percentage changes = 120%, *Fig.* 1). There was a significant increase in A_{2A} adenosine receptor gene expression in S+TQ and S+TQ+Anta A_{2A} groups compared to the sensitized group (P<0.001 to P<0.01). Percentage changes in these groups are as follows: S+TQ=288% and S+TQ+Anta A_{2A} =91% (*Fig.* 2).

The gene expression of A_{2A} adenosine receptor in S+

Fig 1. A_{2A} adenosine receptor gene expression analysis using RT-PCR in blood lymphocytes in the control (C), sensitized (S), S pretreated with thymoquinone (S+TQ), S pretreated with A_{2A} adenosine receptor antagonist (S+Anta A_{2A}) and S pretreated with thymoquinone and A_{2A} adenosine receptor antagonist (S+TQ+Anta A_{2A}) guinea pigs

Şekil 1. RT-PCR ile kan lenfositlerinde A_{2A} adenozin reseptör gen ekspresyonu analizi; Kontrol (C), uyarılmış (S), timokinon verilmiş S (S+TQ), A_{2A} adenozin reseptör antagonisti verilmiş S (S+Anta A_{2A}) ve timokinon ile birlikte A_{2A} adenozin reseptör antagonisti verilmiş (S+TQ+Anta A_{2A}) ginedonumuzu

Fig 2. Individual values and mean±SEM (big symbols with bars) of the gene expression of A_{2A} adenosine receptor in blood lymphocytes of control (C), sensitized (S), sensitized pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{2A} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2A} antagonist (S+Anta A_{2B}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2B}), sensitized pretreated with selective A_{2B} antagonist and thymoquinone (S+Anta A_{2B}+TQ) groups (for each group, n=6). Statistical differences between control and different groups: + P<0.05, ++ P<0.01, +++ P<0.001. Statistical differences between pretreated groups vs sensitized group: * P<0.05, ** P<0.01, *** P<0.001

Şekil 2. Kan lenfositlerinde A_{2A} adenozin reseptör gen ekspresyonun bireysel değerleri ve ortalama ± SEM (Barlı büyük semboller). Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), timokinon ile birlikte A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}+TQ), timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2B}+TQ) ginedonumuzu (Her grupta n=6). Kontrol ve diğer gruplar arasındaki istatistiksel farklar: + P<0.01. Madde uygulanmış ve uyarılmış gruplar arasındaki istatistiksel farklar: * P<0.05, ** P<0.01, *** P<0.001

Anta A_{2A} and S+TQ+Anta A_{2A} groups decreased significantly compared to thymoquinone pretreated group (P<0.001 and percentage changes = -82% for S+Anta A_{2A} , P<0.001, percentage changes = -50% for S+TQ+Anta A_{2A}). The gene expression of A_{2A} adenosine receptor in S+TQ+Anta A_{2A} group was significantly higher than in S+Anta A_{2A} group (P<0.01, percentage changes= 188%).

Analysis of A_{2A} Adenosine Receptor Gene Expression in Lung Tissue: In comparison to the control group, the gene expression of A_{2A} adenosine receptor in S and S+Anta A_{2A} groups decreased significantly (P<0.05 and percentage changes = -36% for S, P<0.01 and percentage changes = -61%, Fig. 3). There was significant increase in A_{2A} adenosine receptor gene expression in S+TQ and S+TQ+Anta A_{2A} groups compared to group S (P<0.01 and percentage changes = 129% for S+TQ, P<0.05 and percentage changes = 76% for S+TQ+Anta A_{2A} , Fig. 4).

 A_{2A} adenosine receptor gene expression in S+Anta A_{2A} group was significantly lower than the S group (P<0.05, percentage changes= -39%). The gene expression of A_{2A} adenosine receptor in lung tissue of S+Anta A_{2A} group decreased compared to thymoquinone pretreated group (P<0.001). The gene expression of A_{2A} adenosine

Fig 3. A_{2A} adenosine receptor gene expression analysis using RT-PCR in lung tissue in the control (C), sensitized (S), S pretreated with thymoquinone (S+TQ), S pretreated with A_{2A} adenosine receptor antagonist (S+Anta A_{2A}) and S pretreated with thymoquinone and A_{2A} adenosine receptor antagonist (S+TQ+Anta A_{2A}) guinea pigs

Şekil 3. RT-PCR ile akciğer dokusunda A_{2A} adenozin reseptör gen ekspresyonu analizi; Kontrol (C), uyarılmış (S), timokinon verilmiş S (S+TQ), A_{2A} adenozin reseptör antagonisti verilmiş S (S+Anta A_{2A}) ve timokinon ile birlikte A_{2A} adenozin reseptör antagonisti verilmiş (S+TQ+Anta A_{2A}) ginedonumuzu

receptor in S+TQ+Anta A_{2A} group was significantly more than S+Anta A_{2A} group (P<0.01, percentage changes = 188%).

Analysis of A_{2B} Adenosine Receptor Gene Expression in Blood Lymphocytes: Compared to the control group, the gene expression of A_{2B} adenosine receptor in S and S+TQ groups increased significantly (P<0.001 and percentage changes = 632% for S, P<0.01 and percentage changes = 256% for S+TQ, *Fig. 5*). All pretreated groups showed a significant decrease in A_{2B} adenosine receptor gene expression compared with sensitized group (P<0.001 to P<0.01). Percentage changes in these groups are as follows: S+TQ = -51%, S+Anta A_{2B} = -63% and S+TQ+Anta A_{2B} = -191%, *Fig.* 6).

The gene expression of A_{2B} adenosine receptor in blood of S+TQ+Anta A_{2B} group decreased significantly compared to thymoquinone pretreated group and S+Anta A_{2B} group (P<0.001, *Table 1*).

Analysis of A_{2B} Adenosine Receptor Gene Expression in Lung Tissue: As compared with control group, the gene expression of A_{2B} adenosine receptor in S and S+TQ groups increased significantly (P<0.001 and percentage changes = 291% for S, P<0.01 and percentage changes = 171% for S+TQ, *Fig. 7*). With regard to the sensitized group, the gene expression of A_{2B} adenosine receptor in lung tissue of all pretreated groups decreased significantly (P<0.001 to P<0.05, *Fig. 8*).

Fig 4. Individual values and mean±SEM (big symbols with bars) of the gene expression of A_{2A} adenosine receptor in lung tissue of control (C), sensitized (S), sensitized pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{2A} antagonist (S+Anta A_{2A}) and sensitized pretreated with selective A_{2A} antagonist and thymoquinone (S+Anta A_{2A}+TQ) groups (for each group, n=6). Statistical differences between control and different groups: + P<0.05, ++ P<0.01. Statistical differences new pretreated groups vs sensitized group: * P<0.05, ** P<0.01

Şekil 4. Akciğer dokusunda A_{2A} adenozin reseptör gen ekspresyonun bireysel değerleri ve ortalama ± SEM (Barlı büyük semboller). Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), timokinon ile birlikte A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}+TQ) ginedonumuzu (Her grupta n=6). Kontrol ve diğer gruplar arasındaki istatistiksel farklar: + P<0.05, ++ P<0.01. Madde uygulanmış ve uyarılmış gruplar arasındaki istatistiksel farklar: * P<0.05, ** P<0.01

MIRZAMOHAMMADI, BARADARAN, SHANEHBANDI KEYHANMANESH, SHAHBAZFAR, PEJMAN

The gene expression of A_{2B} adenosine receptor in the lung tissue of S+Anta A_{2B} and S+TQ+Anta A_{2B} groups decreased compared to thymoquinone pretreated group (P<0.001, percentage changes = -68% for S+Anta A_{2B} and percentage changes = -70% for S+TQ+Anta A_{2B}). In the lung tissue of S+TQ+Anta A_{2B} group, the gene expression of A_{2B} adenosine receptor was significantly lower than S+Anta A_{2B} group (P<0.01, percentage changes = -5.50%, *Table 1*).

Pathology: With regard to this scoring, all pathological changes in the S, S+Anta A_{2A} and S+TQ+Anta A_{2A} groups, including the vascular membrane hyperplasia, airway membrane hyperplasia, the presence of mucosal plug, respiratory epithelial denudation, cellular infiltration and emphysema were significantly higher than those in the C group (P<0.05 for all cases). Moreover, the presence of mucosal plug, respiratory epithelial denudation and emphysema in S+TQ and S+Anta A_{2B} groups were significantly higher than those in the C group that those in the C group (P<0.05, *Fig. 9a-g*).

All pathological changes in S+TQ, S+Anta A_{2B} and S+TQ+ Anta A_{2B} groups (except inflammatory infiltration in S+Anta A_{2B}), and the presence of mucosal plug in S+TQ+Anta A_{2A} group were significantly decreased in comparison with the sensitized group (P<0.05). However, there were still significant variations in presence of mucosal plug, respiratory epithelial denudation and emphysema between the C group and S+TQ group (P<0.05, *Table 2*).

All criteria in S+Anta A_{2A} group, and airway membrane hyperplasia, the presence of mucosal plug and cellular infiltration in S+Anta A_{2B} group were significantly higher than S+TQ group (P<0.001 to P<0.05). There were no differences in the pathological changes between S+TQ+ Anta A_{2A} and S+TQ+Anta A_{2B} groups and the S+TQ group. There was not any significant differences between S+Anta A_{2A} and S+TQ+Anta A_{2A} groups and between S+Anta A_{2B} and the S+TQ+Anta A_{2B} group (*Table 2*).

Table 1. The mean value of the gene expression of A_{2B} adenosine receptor in blood lymphocyte and lung tissue and blood cytokines (IL-4 and IFN-g) in control (C), sensitized for pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{2A} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist and thymoquinone (S+Anta A_{2B} +TQ) and sensitized pretreated with selective A_{2B} antagonist and thymoquinone (S+Anta A_{2B} +TQ) groups (for each group, n = 8)

Tablo 1. Kan lenfosit ve akciğer dokusu A_{2B} adenozin reseptör gen ekspresyonu ile kan sitokinlerinin ortalama değerleri. Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2B}), A_{2A} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2A} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2A} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) ve A_{2B} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{2B} +TQ) (Her grupta n=8)

Parameter	с	s	S+TQ	S+Anta A _{2A}	S+Anta A _{2B}	S+TQ+Anta A _{2A}	S+TQ+Anta A _{2B}
The gene expression of A _{2B} adenosine receptor in blood lymphocyte	0.54±0.23	3.93±0.51	1.91±0.16	0.63±0.15 +++	1.41±0.34	1.82±0.20 **	0.34±0.13 +++ ###
The gene expression of A _{2B} adenosine receptor in lung tissue	0.59±0.18	2.32±0.27	1.61±0.13	0.58±0.05 +++	0.51±0.08 +++	1.68±0.24 **	0.48±0.14 +++ ##
Blood IL-4 level	39.78±2.01	47.41±1.98	43.88±1.70	49.48±2.74	45.20±2.15	46.24±1.38	39.98±0.82 #
Blood IFN-gamma level	104.97±5.93	117.37±2.71	124.93±2.31	101.14±3.24 +++	120.03±2.95	107.87±2.04 +++	126.04±2.81

Statistical differences between pretreated groups vs S+TQ group: +++; P<0.001; Statistical differences between S+TQ+Anta A_{2A} group vsS+Anta A_{2B} group: ** P<0.01; Statistical differences between S+TQ+Anta A_{2B} group vsS+Anta A_{2B} group: #; P<0.05; ##; P<0.01, ###; P<0.001

Table 2. The mean value of different pathological changes in control (C), sensitized (S), sensitized pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{28} antagonist (S+Anta A_{28}), sensitized pretreated with selective A_{28} antagonist (S+Anta A_{28}), sensitized pretreated with selective A_{28} antagonist (S+Anta A_{28}), sensitized pretreated with selective A_{28} antagonist and thymoquinone (S+Anta A_{28} +TQ) and sensitized pretreated with selective A_{28} antagonist and thymoquinone (S+Anta A_{28} +TQ) groups (for each group, n = 8**Tablo 2.** Değişik patolojik değişimlerim ortalama değeri. Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{28} antagonisti verilmiş ve uyarılmış ve uyarılmış (S+Anta A_{28}), A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uyarılmış (S+Anta A_{28} +TQ) ve A_{28} antagonisti ve timokinon verilmiş ve uya

Parameter	с	S	S+TQ	S+Anta A _{2A}	S+Anta A _{2B}	S+TQ+Anta A _{2A}	S+TQ+Anta A _{2B}
Vascular smooth muscle hypertrophy and hyperplasia	0.33±0.21	3±0.3 +++	1.33±0.30 **	2.90±0.28 +++ ##	1.42±0.48 *	2.29±0.42 +	0.86±0.34 **
Airways smooth muscle hypertrophy and hyperplasia	0.17±0.16	2.54±0.28 +++	0.83±0.24 ***	2.54±0.31 +++ ###	0.86±0.34 **	2.29±0.42 ++ #	0.71±0.29 **
Presence of mucosal plug	0±0	2.72±0.14 +++	0.67±0.19 ***	2.27±0.23 +++ ###	1.14±0.34 + ***	1.71±0.29 +++ * #	0.29±0.18 ***
Respiratory epithelial denudation	0.17±0.16	2.18±0.23 +++	0.83±0.20 ***	2.45±0.21 +++ ###	0.86±0.26 **	1.71±0.29 ++	0.29±0.18 ***
Inflammatory infiltration	0±0	1.55±0.20 ++	0.41±0.19 **	2.18±0.22 +++ ###	0.71±0.35	1.85±0.34 +++ ##	0.57±0.30
Emphysema	0.17±0.16	2±0.27 +++	0.92±0.19 *	2.18±0.23 +++ ##	1.43±0.30	1.77±0.29 ++	0.71±0.29 *

Statistical differences between groups vs C group: ++; P<0.01, +++; P<0.001; Statistical differences between pretreated groups vs S group: * P<0.05, ** P<0.01, *** P<0.001; Statistical differences between pretreated groups vs S+TQ group: #; P<0.05, ##; P<0.01, ###; P<0.001

Fig 5. A_{2B} adenosine receptor gene expression analysis using RT-PCR in blood lymphocytes in the control (C), sensitized (S), S pretreated with thymoquinone (S+TQ), S pretreated with A_{2B} adenosine receptor antagonist (S+Anta A_{2B}) and S pretreated with thymoquinone and A_{2B} adenosine receptor antagonist (S+TQ+Anta A_{2B}) guinea pigs

Şekil 5. RT-PCR ile kan lenfositlerinde A_{28} adenozin reseptör gen ekspresyonu analizi; Kontrol (C), uyarılmış (S), timokinon verilmiş S (S+TQ), A_{28} adenozin reseptör antagonisti verilmiş S (S+Anta A_{28}) ve timokinon ile birlikte A_{28} adenozin reseptör antagonisti verilmiş (S+TQ+Anta A_{28}) ginedonumuzu

Fig 6. Individual values and mean±SEM (big symbols with bars) of the gene expression of A_{2B} adenosine receptor in blood lymphocytes of control (C), sensitized (S), sensitized pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2B}) and sensitized pretreated with selective A_{2B} antagonist and thymoquinone (S+Anta A_{2B}+TQ) groups (for each group, n=6). Statistical differences between control and different groups: ++ P<0.01, +++ P<0.001, Statistical differences between pretreated groups vs sensitized group: * P<0.05, ** P<0.01, *** P<0.001

Şekil 6. Kan lenfositlerinde A_{2B} adenozin reseptör gen ekspresyonun bireysel değerleri ve ortalama ± SEM (Barlı büyük semboller). Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2B}), timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2B}+TQ) ginedonumuzu (Her grupta n=6). Kontrol ve diğer gruplar arasındaki istatistiksel farklar: + P<0.05, ++ P<0.01, +++ P<0.001. Madde uygulanmış ve uyarılmış gruplar arasındaki istatistiksel farklar: * P<0.05, ** P<0.01,

209

Fig 7. A_{2B} adenosine receptor gene expression analysis using RT-PCR in lung tissue in the control (C), sensitized (S), S pretreated with thymoquinone (S+TQ), S pretreated with A_{2B} adenosine receptor antagonist (S+Anta A_{2B}) and S pretreated with thymoquinone and A_{2B} adenosine receptor antagonist (S+TQ+Anta A_{2B}) guinea pigs

Şekil 7. RT-PCR ile akciğer dokusunda A_{2B} adenozin reseptör gen ekspresyonu analizi; Kontrol (C), uyarılmış (S), timokinon verilmiş S (S+TQ), A_{2B} adenozin reseptör antagonisti verilmiş S (S+Anta A_{2B}) ve timokinon ile birlikte A_{2B} adenozin reseptör antagonisti verilmiş (S+TQ+Anta A_{2B}) ginedonumuzu

Blood IL-4 and IFN-y Levels: The mean value of blood IL-4 level in S, S+Anta A_{2A} , S+Anta A_{2B} and S+TQ+Anta A_{2A} groups was significantly higher than that in the C group (P<0.05). In S+TQ+Anta A_{2B} group, this cytokine is significantly lower than S group (P<0.01). The blood IL-4 level in S+TQ group showed non-significant decrease compared to that of the S group. However, the mean value of the IL-4 in this group was not significantly higher than that in the C group. There were not significant differences between pretreated groups (*Fig. 10a*).

The mean value of the blood IFN- γ level of S, S+TQ, S+Anta A_{2B} and S+TQ+Anta A_{2B} groups was significantly higher than that of the C group (P<0.01 to P<0.05). There was significant increase in blood IFN- γ of S+TQ and S+TQ+Anta A_{2B} groups compared to that in the S group

Fig 8. Individual values and mean±SEM (big symbols with bars) of the gene expression of A_{2B} adenosine receptor in lung tissue of control (C), sensitized (S), sensitized pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2b}) and sensitized pretreated with selective A_{2B} antagonist and thymoquinone (S+Anta A_{2B}+TQ) groups (for each group, n=7). Statistical differences between control and different groups: ++ P<0.01, +++ P<0.001, Statistical differences between pretreated groups vs sensitized group: * P<0.05, *** P<0.001

Şekil 8. Akciğer dokusunda A_{2B} adenozin reseptör gen ekspresyonun bireysel değerleri ve ortalama ± SEM (Barlı büyük semboller). Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), timokinon ile birlikte A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}+TQ) timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}+TQ) ginedonumuzu (Her grupta n=6). Kontrol ve diğer gruplar arasındaki istatistiksel farklar: + P<0.05, ++ P<0.01. Madde uygulanmış ve uyarılmış gruplar arasındaki istatistiksel farklar: * P<0.05, ** P<0.01

(P<0.05); however the mean value of IFN- γ in S+Anta A_{2A} and S+TQ+Anta A_{2A} groups was significantly lower than that in the S group (P<0.01 to P<0.05). The mean value of IFN- γ in S+Anta A_{2A} and S+TQ+Anta A_{2A} groups was significantly lower than that in S+TQ group (P<0.001, *Fig. 10b*).

DISCUSSION

The present study attempted to assess the effect of thymoquinone, alone and in the presence of A_{2A} adenosine receptor antagonist, on the A_{2A} and A_{2B} adenosine receptor mRNA gene expression in blood lymphocytes and lung tissue of ovalbumin-sensitized guinea pigs by the use of Real Time PCR method. In addition, blood IL-4 and IFN- γ level and lung pathological changes were analyzed.

The Effect of Thymoquinone on A_{2A} **Adenosine Receptor:** Data from these experiments in lymphocytes and lung tissue showed that thymoquinone could increase A_{2A} adenosine receptor mRNA expression significantly; however, administration of selective antagonist of A_{2A} adenosine receptor decreased mRNA expression of A_{2A} receptor. The concurrent administration of these two exogenous factors has a slight effect on the expression of A_{2A} adenosine receptors.

Fig 9. Photographs of lung specimen in guinea pigs: **a-** control normal lung tissues (C, 10x10), b- sensitized group (S, 10x40) with perivascular inflammatory infiltration, c- sensitized group pretreated with thymoquinone (S+TQ, 10x40) with airway smooth muscle hyperplasia and mild inflammatory infiltration, d- sensitized group pretreated with selective A_{2A} antagonist (S+Anta A_{2A},10x10) with emphysema and atelectasis, esensitized group pretreated with selective A_{2B} antagonist (S+Anta A_{2B}, 10x10) with respiratory epithelial denudation, f- sensitized group pretreated with selective A_{2A} antagonist and thymoquinone (S+TQ+Anta A_{2A}, 10x40) with vascular and airway smooth muscle hyperplasia and hypertrophy and g- sensitized group pretreated with selective A_{2B} antagonist and thymoquinone (S+TQ+Anta A_{2B}, 10x100) with inflammatory infiltration

Şekil 9. Gine domuzlarında akciğer örneklerinin fotoğrafları. a- Kontrol normal akciğer dokusu (C, 10x10), b-uyarılmış grup (S, 10x40), perivasküler yangısal infiltrasyon, c- timokinon verilmiş ve uyarılmış grup (S+TQ, 10x40), havayollarında düz kas hiperplazisi ve orta şiddette yangısal infiltrasyon, d- A_{2A} antagonisti uygulanmış ve uyarılmış grup (S+Anta A_{2A},10x10), amfizem ve atelektazi, e- A_{2B} antagonisti uygulanmış ve uyarılmış grup (S+Anta A_{2B},10x10), respiratorik epitel dökülmesi, f- A2A antagonisti ile birlikte timokinon uygulanmış ve uyarılmış grup (S+TQ+Anta A_{2A}, 10x40), vasküler ve havayolu düz kas hiperplazi ve hipertrofisi ve g- A₂₈ antagonisti ile birlikte timokinon uygulanmış ve uyarılmış grup (S+TQ+Anta A_{2B}, 10x100), yangısal infiltrasyon

 A_{2A} adenosine receptors are known as the antiinflammatory mediators that are highly expressed on lymphocytes ^[26]. Extracellular adenosine increases during asthma and inflammation and this elevated plasma adenosine level could activate A_{2A} receptors. by means of A_{2A} receptors, the activation of these receptors can change the level of blood cytokines ^[27]. The expression of A_{2A} receptors on lymphocytes correlates with adenosine levels in plasma and occupation of these receptors and does not have any relationship with the response of A_{2A} receptors ^[28]. In addition, the expression of A_{2A} receptors is slightly sensitive to changes in concentration of exogenous

As extracellular adenosine has anti-inflammatory effects

Fig 10. The blood IL-4 (a) and IFN- γ (b) levels (pg/ml) of control (C), sensitized (S), sensitized pretreated with thymoquinone (S+TQ), sensitized pretreated with selective A_{2A} antagonist (S+Anta A_{2A}), sensitized pretreated with selective A_{2B} antagonist (S+Anta A_{2B}), sensitized pretreated with selective A_{2A} antagonist and thymoquinone (S+Anta A_{2A}+TQ)and sensitized pretreated with selective A_{2B} antagonist and thymoquinone (S+Anta A_{2B}+TQ) groups (for each group, n=6). Statistical differences between control and different groups: + P<0.05, ++ P<0.01, Statistical differences between pretreated groups vs sensitized group: * P<0.05, ** P<0.01

Şekil 10. Kan IL-4 (a) ve IFN-γ (b) seviyeleri (pg/ml). Kontrol (C), uyarılmış (S), timokinon verilmiş ve uyarılmış (S+TQ), A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}), A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2B}), timokinon ile birlikte A_{2A} antagonisti verilmiş ve uyarılmış (S+Anta A_{2A}+TQ), timokinon ile birlikte A_{2B} antagonisti verilmiş ve uyarılmış (S+Anta A_{2B}+TQ) ginedonumuzu (Her grupta n=6). Kontrol ve diğer gruplar arasındaki istatistiksel farklar: + P<0.05, ++ P<0.01. Madde uygulanmış ve uyarılmış gruplar arasındaki istatistiksel farklar: * P<0.05,

and endogenous factors involved in inflammation ^[29]. On the other hand, thymoquinone as an exogenous factor could change blood cytokine secretion (IL-4 & INF- γ) in the process of asthma; these changes were in accordance with previous studies ^[5,21]. So thymoquinone probably influences the secretion of cytokines of different types of lymphocytes (Th_2/Th_1) and changes the activity of A_{2A} receptors on the surface of lymphocytes and extracellular adenosine levels. Subsequently, these changes affect intracellular cAMP level and A_{2A} receptors mRNA expression.

A_{2A} adenosine receptors have intermediate expression in lung tissue ^[29] and are most relevant to lung disease ^[30]. Administration of thymoquinone caused enhanced A_{2A} receptor gene expression in lung tissue similar to the results of blood lymphocytes. A study in 2006 demonstrated that thymoquinone could affect IFN-y level in bronchoalveolar lavage fluid ^[31]. So it is possible that thymoguinone might have affected lung cytokines secretion and induced intracellular mechanism of A_{2A} adenosine receptor mRNA expression in lung tissue; however, this effect was weaker than blood lymphocytes. This elevated A_{2A} receptor gene expression in lung tissue leads to wound healing and improving tissue destruction in group S + TQ during sensitization. Brown and his colleagues in 2008 showed that stimulation of wound healing in bronchial epithelial cells is the distinguished function of A_{2A} adenosine receptor expression^[2].

The level of IL-4 increased significantly in S+Anta A_{2A} group although the level of IFN- γ decreased significantly in this group compared to the sensitized group. Administration of selective A_{2A} adenosine receptor antagonist, ZM241385, caused the elimination of A_{2A} adenosine receptor or the reduction of their numbers by decreasing cAMP level ^[32] and influencing secreted cytokines ^[33]. The previous study indicated that administration of this antagonist caused an increase in serum level of IL-4 and a decrease in IFN- γ ^[34].

As expression of pro-inflammatory cytokines can stimulate the gene expression of A_{2A} adenosine receptor ^[35], it has been suggested that A_{2A} adenosine receptor antagonist and increased serum IL- 4 probably cause improvement of A_{2A} receptors expression in lymphocytes. Although the administration of this antagonist suppresses the anti-inflammatory effect of A_{2A} receptors on the cell surface, but results of A_{2A} receptor mRNA expression were controversial. Nowadays it is accepted that the level of mRNA expression does not correlate exactly with proteins expressed on the cell surface because of some epigenetic factors ^[36].

The results of the present study indicate that all pathological criteria significantly increased in S+Anta A_{2A} group compared to controls. Spicuzza in 2006 demonstrated that ZM241385, selective A_{2A} adenosine receptor antagonist, could affect respiratory smooth muscle and blocking of these receptors exacerbated asthmatic symptoms ^[29].

The results of this investigation showed a significant reduction in gene expression of A_{2A} adenosine receptor in S+TQ+Anta A_{2A} group compared to the S + TQ and S

+ Anta A_{2A} groups. It is suggested that thymoquinone prevented the secretion of blood cytokines during the sensitization process ^[5,21] and the elevated level of IL-4 did not occur to stimulate A_{2A} adenosine receptor expression during administration of selective A_{2A} adenosine receptor antagonist.

There were not significant differences between A_{2A} adenosine receptor expression in lung tissue of group S+TQ+Anta A_{2A} and S+TQ group. According to the results of the present study, it is concluded that thymoquinone had a significant effect on A_{2A} receptor expression in respiratory epithelial cells since respiratory epithelial cells express A_{2A} adenosine receptors, although the A_{2A} receptors expression and its regulation under inflammatory conditions in epithelial cells have not been documented and the biological importance of increased expression on epithelial cells is unknown^[35]. Our results suggest that the A_{2A} adenosine receptors probably play a role in the pathogenesis of inflammatory diseases. A previous study of ours showed that concurrent administration of thymoquinone and selective adenosine A_{2A} receptor antagonist improved tracheal smooth muscle contraction and WBC count in bronchoalveolar lavage fluid in comparison with the S+Anta A_{2A} group ^[37]. Polosa's study also showed that ZM241385, selective A_{2A} adenosine antagonist, affected bronchial smooth muscle^[30].

The Effect of Thymoquinone on A_{2B} Adenosine **Receptor:** The second part of this study evaluated the effect of thymoquinone on blood cytokines, lung pathology and the gene expression of A_{2B} adenosine receptors, in the presence of MRS1706; selective A_{2B} receptor antagonist, in asthmatic guinea pigs.

The gene expression of A_{2B} receptors in sensitized animals (S group) and pretreated group with thymoquinone (S+TQ group) significantly increased compared to controls. This increase of expression in S group and S+TQ group was 86% and 72% respectively. In these groups, the blood IL-4 and IFN- γ levels and pathological changes were significantly raised in comparison to the control group. These findings were in accordance with results of our previous studies ^[19,34,38]. The increment in A_{2B} receptors gene expression, cytokines and pathological changes in S+TQ group compared with C group was due to inflammation process but there was statistically significant reduction in comparison with the S group. This supports the notion that thymoquinone can improve inflammation and relieve its symptoms.

This study showed that single dose administration of MRS1706, selective A_{2B} adenosine receptor antagonist, could improve lung pathological changes; however, it could not decrease to the control level. These results are in line with Mustafa's study ^[16]. In addition, the percentage of increase in A_{2B} receptor gene expression in S+Anta A_{2B} group significantly plummeted compared to the S group.

There was not a statistically significant difference between A_{2B} receptors gene expression and pathological changes in this group and the control group. This indicated that administration of A_{2B} receptor antagonist could prevent asthma induced inflammatory changes.

It is demonstrated that the anti-inflammatory and pro-inflammatory effects of adenosine depend on their level in lung tissue. Lung inflammation causes a hypoxic environment in which adenosine is produced. At first, the low level of adenosine stimulates high-affinity receptors such as A_{2A} adenosine receptors which shows the protective effect of adenosine. However, in severe lung inflammatory conditions, the high level of produced adenosine affects low-affinity receptors such as A_{2B} receptors and exacerbates the inflammation^[39].

The gene expression of A_{2B} receptor, pathological changes and blood IL-4 level in the sensitized group pretreated by thymoquinone and Anta A_{2B} (S+TQ+Anta A_{2B} group) were not statistically different from the control group. Also, the blood level of IFN- γ in S+TQ+Anta A_{2B} group rose significantly compared to the control and sensitized groups. Moreover, in the S+TQ+Anta A_{2B} group, the administration of thymoquinone and selective antagonist together caused more improvement than S+TQ and S+Anta A_{2B} groups. These results are in accordance with results of our current study ^[37] which is related to the effect of administration of thymoquinone and A_{2B} receptor antagonist together to relieve inflammation.

Cytokines can regulate the number of adenosine receptors in inflammatory environment ^[40] and our previous study demonstrated that IFN- γ level in sensitized group pretreated with A_{2B} receptor antagonist group has increased significantly compared to the S group and this change could influence the expression of adenosine receptors or T-cells ^[34]. These observations, therefore, support the hypothesis that blocking of A_{2B} receptor with selective antagonist probably causes changes in levels of secreted cytokines related to inflammation. These findings are in accordance with the results of Anvari's study which showed that in A_{2B} receptor-knockout mice, the expression and secretion of T-cell decreases significantly ^[41].

The results of gene expression of A_{2B} adenosine receptors in lung tissue are already similar to the findings in blood lymphocytes. The comparison of percentage of gene expression of A_{2B} receptor in blood lymphocytes and lung tissue in the analyzed groups showed that thymoquinone administration has more influence on blood lymphocytes while administration of the selective A_{2B} receptor antagonist was more effective in lung tissue. It was probably due to high expression of A_{2B} receptor in pulmonary resident cells; epithelial, bronchial smooth muscle and endothelial cells, because the pre-inflammatory effect of A_{2B} receptor stimulation was demonstrated in these cells ^[41]. On the other hand, this receptor could increase the expression of pre-inflammatory mediators in different cells of chronic pulmonary diseases and over-expression of Th₂ cytokine in lung was associated with increasing levels of A_{2B} receptor ^[42]. While local cytokines played an important role in regulating pre/anti-inflammatory activities of adenosine, and while these cytokines could also regulate the levels of adenosine metabolic enzymes and adenosine receptors in inflammatory environment ^[40], MRS1706, selective A_{2B} receptor antagonist, probably inhibits their influence on the expression of pre-inflammatory mediators by blocking receptors. However, it is suggested that the effects of agonists of adenosine receptors are evaluated in future researches to determine the exact mechanism(s) of thymoquinone.

In conclusion, the results showed that thymoquinone could affect A_{2A} and A_{2B} adenosine receptors gene expression and some of the therapeutic effects of thymoquinone in reducing asthma symptoms might be partially mediated through A_2 adenosine receptors.

Acknowledgement

This is a report of a database from the thesis entitled "The evaluation of the effect of thymoquinone on A_{2A} and A_{2B} adenosine receptors' gene expression in ovalbumininduced asthmatic guinea pigs" registered in Drug Applied Research Center of Tabriz University of medical sciences.

CONFLICT OF INTEREST: None declared.

REFERENCES

1. Shin I-S, Ahn K-S, Shin N-R, Jeon CM, Kwon OK, Lee K, Oh SR: Homoegonol attenuates the asthmatic responses induced by ovalbumin challenge. *Pharmacal Research*, 37, 1201-1210, 2014. DOI: 10.1007/ s12272-013-0327-8

2. Brown R, Spina D, Page C: Adenosine receptors and asthma. *Br J Pharm*, 153 (S1): S448-S456, 2008. DOI: 10.1038/bjp.2008.22

3. Shi HZ, Qin XJ: CD4/CD25 regulatory T lymphocytes in allergy and asthma. *Allergy*, 60, 986-995, 2005. DOI: 10.1111/j.1398-9995.2005.00844.x

4. Schmidt-Weber C, Blaser K: The role of the FOXP3 transcription factor in the immune regulation of allergic asthma. *Curr Allergy Asthma Rep*, 5, 356-361, 2005.

5. Keyhanmanesh R, Boskabady MH, Khamneh S, Doostar Y: Effect of thymoquinone on the lung pathology and cytokine levels of ovalbumin-sensitized guinea pigs. *Pharmacol Rep*, 62, 910-916, 2010. DOI: 10.1016/S1734-1140(10)70351-0

6. Boskabady MH, Keyhanmanesh R, Khamneh S, Doostar Y, Khakzad MR: Potential immunomodulation effect of the extract of *Nigella sativa* on ovalbumin sensitized guinea pigs. *JZUS*, 12, 201-209, 2011. DOI: 10.1631/jzus.B1000163

7. Alexander SPH, Mathie A, Peters JA: Guide to receptors and channels (GRAC). 3rd ed., *Br J Pharmacol*, 153 (Suppl. 2): S1-S209, 2008. DOI: 10.1038/ sj.bjp.0707746

8. Huszar E, Vass G, Vizi E, Csoma Z, Barat E, Molnar Vilaqos G, Herjavecz I, Horvath I: Adenosine in exhaled breath condensate in healthy volunteers and in patients with asthma. *Eur Respir J*, 20, 1393-1398, 2002. DOI: 10.1183/09031936.02.00005002

9. Smith N, Broadley K: Adenosine receptor subtypes in the airways responses to 5-adenosine monophosphate inhalation of sensitized guinea-pigs. *Clin Exp Allergy*, 38, 1536-1547, 2008. DOI: 10.1111/j.1365-

2222.2008.03034.x

10. Stefania G, Kitia V, Stefania M, Eleonora F, Valeria S, Annalisa B, Edward L, Stephen ML, Pier AB: Adenosine and lymphocyte regulation. *Purinergic Signal*, 3, 109-116, 2007. DOI: 10.1007/s11302-006-9042-y

11. Palmer TM, Trevethick MA: Suppression of inflammatory and immune responses by A2a adenosine receptor. *Br J Pharmacol*, 153, S27-S34, 2008. DOI: 10.1038/sj.bjp.0707524

12. Huang S, Apasov S: Role of A2a extracellular adenosine receptor mediated signalling in adenosine mediated inhibition of T cell activation and expansion. *Blood*, 90, 1600-1610, 1997.

13. Feoktistov I, Biaggioni I: Adenosine A2B receptors. *Pharmacol Rev*, 49 (4): 381-402, 1997.

14. Feoktistov I, Polosa R, Holgate S, Biaqqioni I: Adenosine A2b receptor: A novel therapeutic target in asthma? *Trends Pharmacol Sci*, 19, 148-53, 1998. DOI: 10.1016/S0165-6147(98)01179-1

15. Fozard J R, Baur F, Wolber C: Antagonist pharmacology of adenosine A2B receptors from rat, guinea pig and dog. *Eur J Pharmacol*, 475, 79-84, 2003. DOI: 10.1016/S0014-2999(03)02078-8

16. Mustafa S, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D: Effect of a specific and selective A2B adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. *J Pharmacol Exp Ther*, 320, 1246-1251, 2007. DOI: 10.1124/jpet.106.112250

17. Kalus U, Pruss A, Bystron J, Jurecka M, Smekalova A, Lichius JJ, Kiesewetter H: Effect of *Nigella sativa* (black seed) on subjective feeling in patients with allergic diseases. *Phytother Res*, 17, 1209-1214, 2003. DOI: 10.1002/ptr.1356

18. Hajhashemi V, Ghannadi A, Jafarabadi H: Black cumin seed essential oil, as a potent analgesic and anti-inflammatory drug. *Phytother Res*, 18 (3): 195-199, 2004.

19. Keyhanmanesh R, Gholamnezhad Z, Boskabady MH: The relaxant effect of *Nigella sativa* on smooth muscles, its possible mechanisms and clinical applications. *IJBMS*, 17, 939-949, 2014.

20. Gholamnezhad Z, Keyhanmanesh R, Boskabady MH: Antiinflammatory, antioxidant, and immunomodulatory aspects of *Nigella sativa* for its preventive and bronchodilatory effects on obstructive respiratory diseases: A review of basic and clinical evidence. J Funct Foods, 17, 910-927, 2015. DOI: 10.1016/j.jff.2015.06.032

21. Keyhanmanesh R, Boskabady M, Eslamizadeh M, Khamneh S, Saadatlou MA: The effect of thymoquinone, the main constituent of *Nigella sativa* on tracheal responsiveness and white blood cell count in lung lavage of sensitized guinea pigs. *Planta Med*, 75, 1-5, 2009. DOI: 10.1055/s-0029-1186054

22. Boskabady MH, Keyhanmanesh R, Khamneh S, Ebrahimisaadatlou MA: The effect of *Nigella sativa* extract on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs. *Clinics*, 66, 879-887, 2011. DOI: 10.1590/S1807-59322011000500027

23. El Aziz AEA, El Sayed NS, Mahran LG: Anti-asthmatic and antiallergic effects of thymoquinone on airway-induced hypersensitivity in experimental animals. *J Applied Pharmaceut Sci*, 1, 109-117, 2011.

24. Fozard JR, McCarthy C: Adenosine receptor ligands as potential therapeutics in asthma. *Curr Opin Investig Drugs*, 3, 69-77, 2002.

25. Saadat S, Mohammadi M, Fallahi M, keyhanmanesh R, Aslani MR: The protective effect of a-hederin, the active constituent of *Nigella sativa*, on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs. *J Physiol Sci*, 65, 285-292, 2015. DOI: 10.1007/s12576-015-0367-6

26. Mills JH, Kim DG, Krenz A, Bynoe MS: A_{2A} adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. *J Immunol*, 188, 5713-5722, 2012. DOI: 10.4049/jimmunol.1200545

27. Hasko G, Pacher P: A_{2A} receptors in inflammation and injury: Lessons learned from transgenic animals. *J Leukoc Biol*, 83, 447-455, 2008. DOI: 10.1189/jlb.0607359

28. Jacquin L, Franceschi F, By Y, Durand-Gorde JM, Condo J, Deharo

JC, Michelet P, Fenouillet E, Guieu R, Ruf J: Search for adenosine A_{2A} spare receptors on peripheral human lymphocytes. *FEBS Open Bio*, 3, 1-5, 2013. DOI: 10.1016/j.fob.2012.11.004

29. Spicuzza L, Di Maria G, Polosa R: Adenosine in the airways: Implications and applications. *Eur J Pharmacol*, 533, 77-88, 2006. DOI: 10.1016/j. ejphar.2005.12.056

30. Polosa R: Adenosine-receptor subtypes: Their relevance to adenosinemediated responses in asthma and chronic obstructive pulmonary disease. *Eur Respir J*, 20, 488-496, 2002. DOI: 10.1183/09031936.02.01132002

31. El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC: Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. *Int Immunopharmacol*, 6, 1135-1142, 2006. DOI: 10.1016/j.intimp.2006.02.004

32. Nadeem A, Fan M, Ansari HR, Ledent C, Jamal Mustafa S: Enhanced airway reactivity and inflammation in A2A adenosine receptordeficient allergic mice. *Am J Physiol Lung Cell Mol Physiol*, 292, 335-344, 2007. DOI: 10.1152/ajplung.00416.2006

33. Koshiba M, Rosin DL, Hayashi N, Linden J, Sitkovsky MV: Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. *Mol Pharmacol*, 55 (3): 614-624, 1999.

34. Pejman L, Omrani H, Mirzamohammadi Z, Shahbazfar AA, Khalili M, Keyhanmanesh R: The effect of adenosine A_{2A} and A_{2B} antagonists on tracheal responsiveness, serum levels of cytokines and lung inflammation in guinea pig model of asthma. *Adv Pharmaceut Bulletin,* 4, 131-138, 2014. DOI: 10.5681/apb.2014.020

35. Morello S, Ito K, Yamamura S, Lee KY, Jazrawi E, Desouza P, Barnes P, Cicala C, Adcock IM: IL-1 and TNF-regulation of the adenosine receptor (A_{2A}) expression: Differential requirement for NF-KB binding to

the proximal promoter. *J Immunol*, 177 (10): 7173-7183, 2006.

36. Schiedel AC, Lacher SK, Linnemann C, Knolle PA, Müller CE: Antiproliferative effects of selective adenosine receptor agonists and antagonists on human lymphocytes: Evidence for receptor-independent mechanisms. *Purinergic Signal*, 9, 351-365, 2013. DOI: 10.1007/s11302-013-9354-7

37. Pejman L, Omrani H, Mirzamohammadi Z, Keyhanmanesh R: Thymoquinone, the main constituent of *Nigella sativa*, affects adenosine receptors in asthmatic guinea pigs. *Iran J Basic Med Sci*, 17, 1012-1019, 2014.

38. Keyhanmanesh R, Pejman L, Omrani H, Mirzamohammadi Z, Shahbazfar AA: The effect of single dose of thymoquinone, the main constituents of *Nigella sativa*, in guinea pig model of asthma. *BioImpacts*, 4 (2): 75-81, 2014.

39. Blackburn MR, Lee CG, Young HWJ, Zhu Z, Chunn JL, Kang MJ, Banerjee SK, Elias JA: Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. *J Clin Investigation*, 112, 332-344, 2003. DOI: 10.1172/JCl200316815

40. Zhou Y, Schneider J D, Blackburn MR: Adenosine signaling and the regulation of chronic lung disease. *Pharmacol Ther*, 123, 105-116, 2009. DOI: 10.1016/j.pharmthera.2009.04.003

41. Anvari F, Sharma A K, Fernandez L G, Hranjec T, Ravid K, Kron IL, Laubach VE: Tissue-derived proinflammatory effect of adenosine A2B receptor in lung ischemia-reperfusion injury. *J Thorac Cardiovasc Surg*, 140, 871-877, 2010. DOI: 10.1016/j.jtcvs.2010.06.051

42. Polosa R, Blackburn MR: Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. *Trends Pharmacol Sci*, 30, 528-535, 2009. DOI: 10.1016/j. tips.2009.07.005