
Multiple Hypothesis Testing in a Genome Wide Association Study of 
Bovine Tuberculosis [1]

Burak KARACAÖREN 1
[1] Part of this study was presented as poster at XIVth Congress of Medical Biology and Genetics at Muğla/Turkey (27-30 
October 2015) and published in congress abstract book
1 Department of Animal Science, Faculty of Agriculture, Akdeniz University, TR-07059 Antalya - TURKEY

Article Code: KVFD-2016-15883 Received: 14.04.2016 Accepted: 02.09.2016 Published Online: 09.09.2016

Citation of This Article

Karacaören B: Multiple hypothesis testing in a genome wide association study of bovine tuberculosis. Kafkas Univ Vet Fak Derg, 23, 87-94, 2017. DOI: 
10.9775/kvfd.2016.15883

Abstract
Genome-wide association studies (GWAS) have been used to detect single nucleotide polymorphisms (SNPs) related to various animal traits. The 
outcome of GWAS is based on quality of the both phenotypic and genotypic datasets. False positive (or negative) associations can be obtained 
due to multiple hypothesis testing procedures, quality control measures, or an undetected population structure. The objectives of this study 
were to 1) investigate different multiple hypothesis testing procedures with different quality measures and 2) to detect and correct ancestral 
stratification using different single SNPs models of the bovine tuberculosis GWA data set. Based on a regression model, SNPs from chromosomes 
2, 7, 8 and 13 were detected at a significance level of P<0.001 without correction for multiple hypothesis testing. However, after Bonferroni 
correction, Hochberg’s method and permutation test for multiple hypothesis correction genomic signals, it became non-significant. Only a false 
discovery rate approach detected weak signals (at level of 0.54) from chromosomes 2, 8, and 13. We used a model that took into account the 
effect of linkage disequilibrium to the multiple hypothesis testing procedures by combining adjacent SNPs test statistics with windows sizes 
of 2, 4 and 6. We detected strong genomic signals from chromosomes 13, 8, 6 and 2 at windows size 6. The results of this study showed that 
multiple hypothesis testing procedures are related to false positive genomic signals. It is difficult to suggest universally acceptable multiple 
hypothesis testing and QC measures and their thresholds due to sources of variations between species and within populations. However, 
additional analytical approaches and studies are needed to evaluate the effects of linkage disequilibrium on the multiple hypothesis testing 
procedures and QC measures (especially for minor allele frequencies) to GWAS under various scenarios including, but not limited to, level of 
heritability, linkage disequilibrium, population structure, and population size.
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Sığır Tüberkülozu İçin Çoklu Hipotez Düzeltmesi İle Genom Tabanlı 
İlişki Analizi

Özet
Genom tabanlı ilişki çalışmaları (GTİÇ) kullanılarak çiftlik hayvanlarının verimleri ile ilişkili tekil nükleotid polymorfizmler (TNP) belirlenebil-
mektedir. GTİÇ’den elde edilecek sonuçlar hem fenotip hem de genotip veri setlerinin kalitesine bağlı olacaktır. Populasyon tabakası, çoklu 
hipotez düzeltim yöntemleri ve kalite kontol süreçleri yanlış pozitif (veya negatif ) ilişki sonuçlarına yol açabilir. Bu çalışmanın amaçları: bir 
sığır tüberküloz GTİÇ veri setine 1) değişik kalite ölçütleri ve çoklu hipotez düzeltme yöntemlerinin 2) bazı TNP regresyon yöntemleri ile 
atasal tabakaların belirlenmesi ve düzeltilmesinin etkilerinin incelenmesidir. Çoklu hipotez düzeltmesi olmadan TNP regresyon modeli ile 2, 
7, 8 ve 13. kromozomdan önemli TNP’ler (P<0.001) için belirlendi. Ama çoklu hipotez düzeltmesi Bonferroni düzeltmesi, Hochberg yöntemi 
ve permutasyon ile gerçekleştirildiğinde genomik sinyallerin önemsiz çıktığı gözlemlendi. Sadece yanlış keşif oranı yöntemi 0.54 seviyesinde 
zayıf genomik sinyalleri 2, 8 ve 13. kromozomdan belirledi. Çoklu hipotez testlerinde dengesiz bağıntıyı, 2, 4 ve 6 TNP pencere büyüklüğü 
için modele tanıttık. Pencere büyüklüğü 6 olunca 2, 6, 8 ve 13. kromozomlardan güçlü genomik sinyaller tespit ettik. Bu çalışmanın sonuçları 
çoklu hipotez test yöntemlerinin yanlış genomik sinyallerin keşfedilmesinde önemli olduğunu ortaya koydu ve doğruladı. Hem türler arası 
hem de populasyonlar içi varyasyon kaynakları nedeniyle evrensel kalite kontrol ölçütleri önermek oldukça zordur. Bununla birlikte kalıtım 
derecesi seviyeleri, dengesiz bağıntı, populasyon yapısı ve populasyon büyüklüğü dahil farklı senaryoların varlığında dengesiz bağıntının 
çoklu hipotez test yöntemlerine etkileri farklı kalite kontrol ölçütleri kullanılarak (özellikle farklı minör alel sıklığı seviyelerinde) GTİÇ için 
analitik olarak incelenmelidir.

Anahtar sözcükler: Genom tabanlı ilişki analizi, Çoklu hipotez test yöntemleri, Kalite kontrol yöntemleri
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Multiple Hypothesis Testing ...

INTRODUCTION
P values have been heavily used in frequentist statistics 

(and all other branch of sciences) to evaluate whether 
null hypothesis (stating there is no treatment effects) 
true or not. Optimal use of hypothesis testing is an active 
research area: recently the American Statistical Association 
published how to correctly use and interpret the p values [1]. 
P values could be used over time or space. For example 
Karacaören [2] employed longitudinal p values for modeling 
time effect in genomic studies. Zaykın et al.[3] used the  
combined p values over neighboring chromosomal locations 
(or space) in genome wide association studies (GWAS).

 GWAS have been used to detect single nucleotide 
polymorphisms (SNPs) related to various animal traits. 
GWAS compare the allele frequencies of cases and controls 
to determine significant SNPs. Assumptions regarding the 
genetic architecture of the trait facilitate different statistical 
models in GWAS. If a trait is assumed to be controlled by 
many rare variants, a large amount of hypothesis testing 
must be conducted in piecemeal manner to detect the 
association [4]. Due to the SNPs depending on chromosomal 
locations, the naive use of multiple hypothesis testing 
procedures might lead to a loss of power [5,6]. Therefore, the 
outcome of GWAS is dependent on the model of multiple 
hypothesis testing and the quality of both the phenotypic 
and genotypic datasets [7,8]. False positive (or negative) 
associations may be obtained due to multiple hypothesis 
testing process, quality control measures and undetected 
population structure. 

For example, current practices of animal breeding 
employ assortative mating to obtain higher selection 
responses in animal production. A GWAS model should 
take this relatedness structure into account using pedigree 
and/or genomic information. Several approaches have 
been proposed for detecting and correcting the effects 
due to common ancestral clusters using single SNP 
approaches. Although principal component-based 
approaches are commonly used in the literature, mixed 
model-based approaches have also gained popularity 
recently [9]. Price et al.[10] used principal component analysis  
to take into account of ancestral population stratifications. 
Aulchenko et al.[11] suggested conducting genome-wide 
rapid association using mixed model and regression 
(GRAMMAR) for phenotypes based on polygenic effects  
of pedigree structure. Amin et al.[12] extended the  
GRAMMAR approach by using genomic information 
instead of pedigree information. Svishcheva et al.[13] 
extended the original GRAMMAR approach by introducing 
a gamma factor to adjust the inflation factor. Karacaören [14] 

defined the original GRAMMAR approach in a Bayesian 
framework.

Bermingham et al.[15] used GRAMMAR and regional 
heritability mapping approaches to detect variants using 
a bovine tuberculosis (BT) dataset. BT is an infectious 

disease with annual economic costs estimated as €2  
billion [16]. However availability (and therefore investigation) 
of public genomic livestock datasets especially for BT is 
uncommon. Main reasons are associated with economical 
and strategical values of the datasets [17]. Since BT dataset 
included high (617885 SNPs) number of explanatory 
variables: usage of different multiple hypothesis testing 
procedures may lead to interesting results. The objectives 
of this study were to 1) investigate different multiple 
hypothesis testing procedures with different quality 
measures and 2) to detect and correct ancestral stratification 
using different single SNP models for simulated [18] and  
the BT GWA dataset. 

MATERIAL and METHODS

QTL-MAS Simulated DataSet

The quantitative trait locus marker assisted selection 
(QTL-MAS) simulated data set [18] included 2326 individuals 
from 10031 biallelic SNPs over 5 chromosomes. The pedigree 
was simulated according to the half sib family structure.  
A quantitative trait simulated in association with 37 QTLs. 
Major QTLs were located on chromomes 1 and 3. We 
considered mapped QTLs as if the predicted SNPs were 
located within 5Mb distance from true QTL position. We 
also investigated number of single mapped QTLs using 
the same criteria. More details about the dataset could  
be found at [18].

Phenotypes and Genotypes of the BT Dataset 

The BT dataset was obtained from 1151 Holstein -Friesian 
cows in Northern Ireland [15]. The cases (n=592) and controls 
(n=559) were defined by single intradermal comparative 
tuberculin test and abattoir inspection. Individuals were 
genotyped using BovineHD Illumina Bead 617885 SNPChip. 
More details about the dataset could be found at [15].

Methods

We applied various quality control measures to the real 
BT genotypic data set. Due to selection over generations 
we are not expecting Hardy Weinberg equilibrium in the 
population. However minor allele frequencies (MAF), 
individual and genotypic call rates might be important for 
the outcome of GWAS [19]. Genomic inflation factors could  
be used to asses if the results of the GWA results are biased 
using distribution of the test statistics. Multidimensional 
scaling plots using genomic kinship matrix could be used  
to investigate genetic outliers in the populations.

Association mapping to detect quantitative trait locus 
controlling tuberclosis was implemented in R using the 
various GRAMMAR functions in the GenABEL package [20]. 
GRAMMAR (raw, genomic control or gamma versions) 
function uses a two step linear model. In the first step of 
the GRAMMAR analysis, we estimated the errors for the 
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phenotype using an animal model as was implemented in 
GenABEL; 

y = Xb + Za + e    (i)

where y contains the observations, b is the fixed effects  
of age, breed, season of year of and reason of tuberculosis, 
a is the additive genetic effect, matrices X and Z are 
incidence matrices, and e is a vector containing residuals. 

       (ii)

observations with f regression coefficients vector to 
be estimated, e is a vector of residuals assumed to be 
normally distributed. Svishcheva et al.[13] extended 
GRAMMAR approach by introducing gamma factor for 
adjusting inflation factor. Genetic stratification could also 
be detected by principal components [10]. Phenotypes of 
(i) were corrected by principal components for ancestral 
stratification as was implemented in GenABEL.

frequency of the 1 allele at marker k. We used the GWA 
function for association analysis was implemented in 
R by rrBLUP package [21]. Similar to the GRAMMAR; the 
GWA function use a mixed linear model to take into 
account of genetic stratification by genomic relationship  
matrix. Here the variance of random effect is assumed to

the maximum likelihood estimate of polygenic variance.

Assumptions regarding underling genetic architecture 
in GWAS is crucial for choosing optimal statistical  
models for detection of causal variants. Since we  
assumed that many rare variants are in effect with 
bovine tuberculosis; we employed a single SNP 
regression in (ii). However evaluation of null hypo- 
thesis for huge number of SNPs may lead to false  
positive findings. In order to avoid type 1 errors (rejecting 
of a true null hypothesis); Bonferroni correction, 

Hochberg’s method or false discovery rate approach 
could be used. 

Since huge number of hypothesis testing needs to 
be done to detect the genomic association; type 1 errors 
should be controlled as such at α=0.05 level. If we have m 
number of SNPs to test: Bonferroni correction tests each 
SNPs at the significance level of 0.05/m. Different from 
Bonferroni correction: Hochberg’s method compares each 
p value with different significance levels: 0.05/(m+1-k) 
using ordering values of k. Original false discovery rate 
approach use critical threshold value of i*0.05/m with  
ordering values of i. Full details of this models could be 
found in [22,23]. However failing to taken into account of 
linkage disequilibrium in multiple hypothesis correction 
by adjacent SNPs may lead to loose of power. Zaykin 
et al.[3] suggested to use truncated product method for 
combining p values by chromosomal location of adjacent 
SNPs in various windows sizes.

RESULTS

QTL-MAS Dataset 

QTL-MAS dataset were used for validation of multiple 
hypothesis testing procedures (Bonferroni, Hochberg and 
false discovery rate methods) and Zaykin et al.[3] model 
for QTL mapping. QTLs were mapped by different success 
rates: both Bonferroni and Hochbergs methods resulted as 
0.75 mapping success. However both model did not able 
to detect 29 (total number of QTLs were 37) single QTLs. 
Although false discovery rate approach mapping success 
found to be lower as 0.67: It detected much higher number 
of single QTLs (20 true QTLs). We combined p values over 
chromosomal locations using Zaykin et al.[3] approach. 
Both windows sizes of 4 and 6 gave the same mapping 
success as 0.74. However Zaykins model predicted highest 
number of true single QTLs (33 true single QTLs) using 
both 4 and 6 windows sizes by Bonferroni correction. We 
noted that Zaykins model detected false positive QTLs 
from chromosome 5, where there was no QTL on this 
chromosome, for windows size of 0.

BT Dataset

The Manhattan plot of the transformed (-log) p values 
using GWA option of rrBLUP [21] revealed strong genomic 
signals from chromosomes 8 and 13 without any quality 
control (Fig. 1). We fixed the minor allele frequencies at 
0.01 (Quality Control 1, QC1) and 0.05 (Quality Control 2, 
QC2) and accordingly created two genotypic datasets.

We excluded 10 SNPs with a minor allele frequency 
<1% and 44,783 SNPs with a minor allele frequency <5%. 
There was a 0.90 call rate for both animals and SNPs, 
leaving 617,875 SNPs and 573,102 SNPs in the analyses  
with 0.01 and 0.05 minor allele frequencies, respectively. 
We excluded one animal due to a sex chromosome error,  

y = Xb + Za + e     (i) 
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	        For the random effects, it is assumed that A is the 
additive genomic relationship matrix for the animals; I is 
an identity matrix,  is the additive genetic variance and 

is the residual variance. In the second step, assuming a 
single SNP model for the quantitative trait, we could detect 
the most significant SNPs using the following model: 

	   where y represents vector of n observations (residuals from 
(i)), η  is intercept, X is a design matrix relating 
observations with f regression coefficients vector to be 
estimated, e is a vector of residuals assumed to be 
normally distributed. Svishcheva et al.[13] extended 
GRAMMAR approach by introducing gamma factor for 
adjusting inflation factor. Genetic stratification could also 
be detected by principal components [10]. Phenotypes of (i) 
were corrected by principal components for ancestral 
stratification as was implemented in GenABEL. 

	        We used genomic relationship matrix [21] to take into 
account of pedigree structure:  where c is a 
normalizing constant and  is the 
frequency of the 1 allele at marker k. We used the GWA 
function for association analysis was implemented in R by 
rrBLUP package [21]. Similar to the GRAMMAR; the 
GWA function use a mixed linear model to take into 
account of genetic stratification by genomic relationship 
matrix. Here the variance of random effect is assumed to 
be 2A  where A is the genomic kinship matrix and  is 
the maximum likelihood estimate of polygenic variance. 

	        We used genomic relationship matrix [21] to take into 
account of pedigree structure:  where c is a 
normalizing constant and  is the 
frequency of the 1 allele at marker k. We used the GWA 
function for association analysis was implemented in R by 
rrBLUP package [21]. Similar to the GRAMMAR; the 
GWA function use a mixed linear model to take into 
account of genetic stratification by genomic relationship 
matrix. Here the variance of random effect is assumed to 
be 2A  where A is the genomic kinship matrix and  is 
the maximum likelihood estimate of polygenic variance. 
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Fig 1. Manhattan plots of -log 10 (P 
values) using all SNPs (without quality 
control filters) 

Şekil 1. Kalite kontrol süzgeçleri olmadan 
elde edilen bütün TNP›lere ait -log 10 (p 
değerleri) için Manhattan şekli

Fig 2. Manhattan plots of -log 10 (P values) 
using all SNPs with minor allele frequency 
0.05, calling rate for animals 0.10, calling 
rate for genotypes 0.10 

Şekil 2. 0.05 minör alel sıklıklı, 0.10 
genotip ve hayvan başına çağırım oranlı 
bütün TNP›lere ait -log 10 (p değerleri) için 
Manhattan şekli
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retaining 1150 animals in the analyses. The mean  
identity by state was found to be 0.72 (0.009) 0.69 (0.008)  
using QC1 and QC2, respectively. The mean hetero- 
zygosis was found to be 0.36 (0.01) and 0.38 (0.01) using 
QC1 and QC2, respectively. We estimated heritability  
to be 0.23 and 0.22 using genomic kinship matrix and 
QC1 and QC2, respectively. Although a multi-dimensional 

scaling method detected two slightly separated clusters 
in the population (data not shown), as suggested by 
Birmingham et al.[15], we retained all of the animals in 
the dataset for further analyses. Since the results of both  
the GWA function of rrBLUP (Fig. 2) and GenABEL were 
similar, we opted to discuss only those results obtained 
from GenABEL.

KARACAÖREN

Table 1. Genome wide association results of QTLMAS dataset using GRAMMAR and different windows sizes (0, 2, 4 and 6)

Tablo 1. Farklı pencere büyüklüklü (0, 2, 4 ve 6) GRAMMAR genom tabanlı ilişki sonuçları

SNP P-VAL SIZE_0 SIZE_2 SIZE_4 SIZE_6

5143 1.313E-16 1.23E-12 3.66E-25 6.52E-48 8.97E-71

5144 0.103 1 1.56E-20 9.39E-43 3.04E-70

5145 7.439E-05 0.696142 2.11E-24 5.28E-43 3.32E-70

906 0.3508 1 4.57E-24 8.7E-42 1.5E-68

905 3.501E-12 3.28E-08 1.15E-20 4.98E-41 2.26E-67

904 0.1411 1 6.08E-10 3.02E-44 3.25E-67

5146 0.5324 1 8.34E-10 5.27E-47 4.71E-65

5153 1.196E-06 0.011192 5.99E-15 1.44E-42 1.29E-64

5141 1.172E-05 0.109676 6.31E-36 5.15E-53 2.08E-64

5147 2.487E-14 2.33E-10 4.49E-19 9.51E-47 2.5E-61

Table 2. Genome wide association results with 0.05 minor allele frequencies of GRAMMAR using genomic control

Tablo 2. Genomik kontrol, 0.05 minör alel sıklığı ile GRAMMAR kullanılarak elde edilen genom tabanlı ilişki sonuçları

Single Nucleotide Polymophism Chromosome Location No of Individuals Chi Square P Val P Val-Permuted

BovineHD0200007460 2 25899036 1057 18.76 1.48E-05 0.93

BovineHD4100005792 7 17622873 1150 18.41 1.78E-05 0.95

BovineHD1300020589 13 71788784 1149 18.30 1.89E-05 0.96

BovineHD1300020586 13 71784332 1146 18.17 2.02E-05 0.96

BovineHD1300020584 13 71782488 1150 18.06 2.14E-05 0.97

BovineHD1300020585 13 71783216 1150 18.06 2.14E-05 0.97

BovineHD1300020590 13 71789620 1150 18.06 2.14E-05 0.97

BovineHD1300020591 13 71791844 1150 17.91 2.32E-05 0.97

BovineHD0800010042 8 33645693 1150 17.76 2.51E-05 0.98

BovineHD4100010384 13 71781867 1139 17.49 2.89E-05 0.99

Table 3. Principal components corrected genome wide association results with 0.05 minor allele frequencies

Tablo 3. 0.05 minör alel sıklığı ve temel bileşenler analizi ile düzeltilerek elde edilmiş genom tabanlı ilişki sonuçları

Single Nucleotide Polymophism Chromosome Location No of Individuals Chi Square P Val P Val-Permuted

BovineHD0800010042 8 33645693 1150 24.62 6.99E-07 0.16

BovineHD1300020589 13 71788784 1149 24.28 8.32E-07 0.18

BovineHD1300020586 13 71784332 1146 24.16 8.86E-07 0.19

BovineHD1300020584 13 71782488 1150 24.04 9.44E-07 0.19

BovineHD1300020585 13 71783216 1150 24.04 9.44E-07 0.19

BovineHD1300020590 13 71789620 1150 24.04 9.44E-07 0.19

BovineHD0800010045 8 33655169 1150 23.70 1.12E-06 0.22

BovineHD1300020591 13 71791844 1150 23.67 1.15E-06 0.23

BovineHD4100010384 13 71781867 1139 23.13 1.51E-06 0.29

BovineHD1300020582 13 71776870 1149 22.63 1.97E-06 0.35
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The genomic control inflation factors of QC1 for the 
GRAMMAR genomic control, principal components corrected 
association and GRAMMAR gamma were 0.87 (7.85×10-6), 
1.14 (1.23×10-5) and 0.99 (8.98×10-6), respectively. The 
genomic control inflation factors of QC2 for GRAMMAR 
genomic control, the principal components corrected for 
association and GRAMMAR gamma were 0.87 (9.18×10-6), 
1.14 (9.19×10-6) and 0.99 (1.05×10-5), respectively.

Results of the QC1 and QC2 association analyses using, 
GRAMMAR with genomic control and principal components 
approaches including permutation tests are reported in 
Table 2, Table 3, Table 4, and Table 5.

DISCUSSION

QTL-MAS Dataset 

Investigation of QTL-MAS simulated dataset showed 
that Bonferroni and Hochberg methods gives conservative 
results (only 8 QTLS were detected out of 37) as was 
also concluded by Johnson et al.[24]. Fu et al.[6] showed 
advantaged of using linkage disequilibrium information in 

multiple hypothesis testing. As was also showed in Table 
1: taking into account of linkage disequilibrium structure 
leads to higher p values proportional to the windows sizes. 
On the basis of these observations we found that: the 
Zaykins model built from different windows sizes found 
the highest number of true QTLs (33 out of 37). Similarly  
Hu et al.[25] showed by simulation that grouping of p values 
leads to higher statistical power in the genetic association 
studies.

BT Dataset

We found that the genomic control inflation factors were 
similar for each association model using QC1 and QC2. The 
GRAMMAR gamma inflation factors were approximately 
1, which indicates that this method is unbiased compared 
with other correction methods. Bermingham et al.[15] also 
noted a minimal increase in the lambda values, similar to 
the results of GRAMMAR with gamma inflation factors. 

Since Bermingham et al.[15] possibly used GRAMMAR 
with gamma inflation factors, we did not reproduce the 
same results in our study. The results of the QC1 and 
QC2 association analyses using GRAMMAR with genomic 

Table 4. Genome wide association results with 0.01 minor allele frequencies of GRAMMAR using genomic control

Tablo 4. Genomik kontrol, 0.01 minör alel sıklığı ile GRAMMAR kullanılarak elde edilen genom tabanlı ilişki sonuçları

Single Nucleotide Polymophism Chromosome Location No of Individuals Chi Square P Val P Val-Permuted

BovineHD0200007460 2 25899036 1057 18.71 3.69E-06 0.95

BovineHD1300020589 13 71788784 1149 18.36 4.57E-06 0.97

BovineHD4100005792 7 17622873 1150 18.31 4.69E-06 0.97

BovineHD1300020586 13 71784332 1146 18.22 4.95E-06 0.98

BovineHD1300020584 13 71782488 1150 18.11 5.29E-06 0.98

BovineHD1300020585 13 71783216 1150 18.11 5.29E-06 0.98

BovineHD1300020590 13 71789620 1150 18.11 5.29E-06 0.98

BovineHD1300020591 13 71791844 1150 17.97 5.76E-06 0.99

BovineHD0800010042 8 33645693 1150 17.63 7.06E-06 0.99

BovineHD4100010384 13 71781867 1139 17.56 7.37E-06 0.99

Table 5. Principal components corrected genome wide association results with 0.01 minor allele frequencies

Tablo 5. 0.01 minör alel sıklığı ve temel bileşenler analizi ile düzeltilerek elde edilmiş genom tabanlı ilişki sonuçları

Single Nucleotide Polymophism Chromosome Location No of Individuals Chi Square P Val P Val-Permuted

BovineHD0800010042 8 33645693 1150 24.59 7.10E-07 0.17

BovineHD1300020589 13 71788784 1149 24.26 8.44E-07 0.19

BovineHD1300020586 13 71784332 1146 24.13 9.00E-07 0.20

BovineHD1300020584 13 71782488 1150 24.01 9.58E-07 0.22

BovineHD1300020585 13 71783216 1150 24.01 9.58E-07 0.22

BovineHD1300020590 13 71789620 1150 24.01 9.58E-07 0.22

BovineHD0800010045 8 33655169 1150 23.66 1.15E-06 0.26

BovineHD1300020591 13 71791844 1150 23.63 1.17E-06 0.26

BovineHD4100010384 13 71781867 1139 23.11 1.09E-06 0.32

BovineHD1300020582 13 71776870 1149 22.59 1.01E-06 0.40
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control and principal component approaches including 
permutation tests are reported in Tables 2-5. We detected 
SNPs from chromosomes 2, 7, 8 and 13 at a significance  
level of P<0.001 without correcting for multiple hypothesis 
testing. However, after the Bonferroni correction, Hochberg’s 
method and the permutation test for multiple hypothesis 
correction (Tables 2-5), the genomic signals became  
non-significant. Only the false discovery rate approach 
detected weak signals (at a level of 0.54) from chromosomes 
2, 8 and 13.

Type 1 errors would increase without correcting for 
multiple hypothesis testing. However, traditional correction 
models do not take into account dependency among 
hypotheses. In GWAS, one of the sources for the correlated 
hypothesis may be linkage disequilibrium. In addition, 
failing to take into account linkage disequilibrium among 
adjacent SNPs may lead to a reduction of power. We used 
the Zaykin et al.[3] model to take into account the effect of 
linkage disequilibrium on the multiple hypothesis testing 
procedures by combining adjacent SNP test statistics with 
window sizes of 2, 4 and 6. We detected strong genomic 
signals from chromosome 13 (-log(p)=90.33), chromosome 
8 (-log(p)=51.34), chromosome 16 (-log(p)=49.47) and 
chromosome 2 (-log(p)=44.77) at a window size of 6. 
However, the test statistics will increase as the window size 
increases using the approach of Zaykin et al.[3]. Although 
top SNPs have been found to be the same irrespective  
of the windows size, larger windows sizes may lead to anti-
conservative results [26].

The results of this study have shown that multiple 
hypothesis testing procedures are related to false positive 
genomic signals. Although the level of minor allele 
frequencies did not make a difference in terms of genomic 
signals (Tables 2-5), these results cannot be generalized [7]. 
It is difficult to suggest universally acceptable multiple 
hypothesis testing [24] and quality control measures and 
their thresholds due to sources of variations between 
species and within populations. However, additional 
analytical approaches and studies are necessary to evaluate 
the effects of linkage disequilibrium on the multiple hypo-
thesis testing procedures and QC measures (especially for 
minor allele frequencies) to GWAS under various scenarios 
including, but not limited to, the level of heritability, linkage 
disequilibrium, population structure and population size. 
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